Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
文档下载 免费文档下载 http://www.wendangwang.com/ 本文档下载自文档下载网,内容可能不完整,您可以点击以下网址继续阅读或下载: http://www.wendangwang.com/doc/b26aead8710c46420b4b74ce AD8226 运算放大器 spec Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier FEATURES Gain set with 1 external resistor Gain range: 1 to 1000 Input voltage goes below ground Inputs protected beyond supplies Very wide power supply range Single supply: 2.2 V to 36 V Dual supplies: ±1.35 V to ±18 V Bandwidth (G = 1): 1.5 MHz CMRR (G = 1): 90 dB minimum for BR models Input noise: 22 nV/√Hz Typical supply current: 350 μA Specified temperature: ?40°C to APPLICATIONS 125°C 8-lead SOIC and MSOP packages 文档下载 免费文档下载 http://www.wendangwang.com/ Industrial process controls Bridge amplifiers Medical instrumentation Portable data acquisition Multichannel systems GENERAL DESCRIPTION The AD8226 is a low cost, wide supply range instrumentation amplifier that requires only one external resistor to set any gain between 1 and 1000. The AD8226 is designed to work with a variety http://www.wendangwang.com/doc/b26aead8710c46420b4b74cevoltages. of A wide signal input range and rail-to-rail output allow the signal to make full use of the supply rails. Because the input range also includes the ability to go below the negative supply, small signals near ground can be amplified without requiring dual supplies. The AD8226 operates on supplies ranging from ±1.35 V to ±18 V for dual supplies and 2.2 V to 36 V for single supply. The robust AD8226 inputs are designed to connect to real-world sensors. In addition to its wide operating range, the Rev. A Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. 文档下载 免费文档下载 http://www.wendangwang.com/ Tradehttp://www.wendangwang.com/doc/b26aead8710c46420b4b74cemarks and registered trademarks are the property of their respective owners. AD8226 PIN CONFIGURATION –IN VSRGVOUTRGREF IN –VS 1 0TOP VIEW0-6(Not to Scale) 3070 Figure 1. Table 1. Instrumentation Amplifiers by Category1 General Zero Military Low High Speed Purpose Drift Grade Power PGA AD8220AD8231AD620AD627AD8250AD8221AD8290AD621AD623AD8251AD8222AD8293AD524AD8223A D8253AD8224AD8553AD526AD8228AD8556AD624AD8227 AD8295 AD8557 文档下载 免费文档下载 http://www.wendangwang.com/ 1 Visit www.analog.com for the latest instrumentation amplifiers. AD8226 can handle voltages beyond the rails. For example, part is guaranteed to withstand ±35 V with a ±5 V supply, the at the input with no damage. Minimum as well as maximum input bias currents are specified to facilitate open wire detection. The AD8226 is perfect for multichannel, spahttp://www.wendangwang.com/doc/b26aead8710c46420b4b74cece-constrained industrial applications. Unlike other low cost, low power instrumentation amplifiers, the AD8226 is designed with a minimum gain of 1 and can easily handle ±10 V signals. With its MSOP package and 125°C temperature rating, the AD8226 thrives in tightly packed, zero airflow designs. The AD8226 is available in 8-lead MSOP and SOIC packages, and is fully specified for ?40°C to 125°C operation. For a device with a similar package and performance as the AD8226 but with gain settable from 5 to 1000, consider using the AD8227. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ?2009 Analog Devices, Inc. All rights reserved. AD8226 文档下载 免费文档下载 http://www.wendangwang.com/ Gain Selection ...................................................................... ....... 19 Reference Terminal ......................................................http://www.wendan gwang.com/doc/b26aead8710c46420b4b74ce.............. Range 20 Input Voltage ................................................................... 20 Layout ......................................................................... ................. Path 20 Input Bias ............................................... Current 21 Return Input Protection ..................................................................... .... 22 Radio Frequency Interference (RFI) ........................................ 22 Information Applications .............................................................. 23 Differential Drive ....................................................................... 23 Precision Strain Gage ................................................................. 24 Driving an ADC ......................................................................... 24 Outline Dimensions ..................................................................... .. 25 Ordering Guide ...http://www.wendangwang.com/doc/b26aead8710c46420b4b74ce................ ....................................................... 25 TABLE OF CONTENTS Features ....................................................................... ....................... 1 Applications ................................................................... 文档下载 免费文档下载 http://www.wendangwang.com/ .................... 1 Pin Configuration .................................................................. ........... 1 General Description .................................................................... ..... 1 Revision History ........................................................................ ....... 2 Specifications ................................................................. .................... 3 Absolute Maximum Ratings ............................................................ 7 Thermal Resistance ...................................................................... 7 ESD Caution ....................................http://www.wendangwang.com/doc/b26ae ad8710c46420b4b74ce.............................................. 7 Pin Configuration and Function Descriptions ............................. 8 Typical Performance Characteristics ............................................. 9 Theory of Operation ...................................................................... 19 Architecture ................................................................... .............. 19 REVISION HISTORY 7/09—Rev. 0 to Rev. A Added BRZ and BRM Models .......................................... Universal Changes to Features Section............................................................ 1 Changes to Table 文档下载 免费文档下载 http://www.wendangwang.com/ 1 ............................................................................ 1 Changes to General Description Section ...................................... 1 Changes to Gain vs. Temperature Parameter, Output Parameter, and Operating Range Parameter, Table 2 ..............................http://www.wendangwang.com/doc/b26aead8710c46420 b4b74ce........... 4 Changes to Common-Mode Rejection Ratio (CMRR) Parameter to Input Offset, VOSO, Average Temperature Coefficient 3 and Parameter, Table ........................................................................ 5 Changes to Gain vs. Temperature Parameter, Table 3 ................. 6 Changes to Gain Selection Section ............................................... 19 Changes to Reference Terminal Section and Input Voltage Range Section ........................................................................ ...... Guide 20 Changes to .......................................................... Ordering 25 1/09—Revision 0: Initial Version Rev. A | Page 2 of 28 H AD8226 SPECIFICATIONS VS = 15 V, ?VS = ?15 V, VREF = 0 V, TA = 25°C, G = 1, RL = 10 kΩ, specifications referred to input, unless otherwise noted. Table 2. 文档下载 免费文档下载 http://www.wendangwang.com/ ARZ, ARMZ BRZ, BRMZ Typ Max Min Typhttp://www.wendangwang.com/doc/b26aead8710c46420b4b74ce Max Unit COMMON-MODE REJECTION RATIO (CMRR) VCM = ?10 V to = 1 80 90 dB G = 10 100 105 dB CMRR with DC at 5 kHz 90 dB G = 1000 100 100 10 V CMRR with DC to 60 Hz dB G = 100 G = 1 80 105 80 110 dB G = 10 dB G = 1000 90 90 G 105 dB G = 100 110 90 dB 22 NOISE Total noise: eN = √(eNI (eNO/G) Voltage Noise Input Voltage Noise, eNI Output Voltage Noise, eNORTI G = 1 G = 10 G = 100 to 1000 Current Noise VOLTAGE OFFSET Input Offset, VOSI Average Temperature Coefficient Output Offset, VOSO Average Temperature Coefficient Offset RTI vs. Supply (PSR) G = 1 G = 10 G = 100 G = 1000 INPUT CURRENT Input Bias Current1 Average Temperature Coefficient Input Offset Current Average Temperature Coefficient REFERENCE INPUT RIN IIN Voltage Range 文档下载 免费文档下载 http://www.wendangwang.com/ Reference Gain to Output Reference Gaihttp://www.wendangwang.com/doc/b26aead8710c46420b4b74cen Error DYNAMIC RESPONSE Small-Signal ?3 dB Bandwidth G = 1 G = 10 G = 100 G = 1000 1 kHz f = 0.1 Hz to 10 Hz f = 1 kHz f = 0.1 Hz to 10 Hz Total offset voltage: VOS = VOSI (VOSO/G) VS = ±5 V to ±15 V TA = ?40°C to 125°C VS = ±5 V to ±15 V TA = ?40°C to ±15 V 25°C TA = TA = TA = 2 125°C TA = ?40°C TA = ?40°C to 125°C TA = ?40°C TA = ?40°C to 22 22 nV/√z 2 μV p-p p-p 120 0.5 80 200 90 dB 100 nA 5 30 5 30 nA 100 kΩ 1500 7 125°C VS = ±5 V to 125°C TA = 25°C fA/√Hz 3 125°C 120 nV/√z 0.5 μV p-p 100 μV 105 70 7 μA ?VS kHz 0.5 2 dB 105 70 0.4 μV p-p 0.5 1 μV/°C 110 pA/°C VSS 0.4 dB 105 nA VS 1 1 160 1000 110 nA V/V 100 0.01 100 500 μV dB nA pA 1 5 μV/°C 5 20 5 20 nA 5 15 5 15 5 0.01 160 2 10 3 5 pA/°C % 100 1500 kz 20 文档下载 免费文档下载 http://www.wendangwang.com/ http://www.wendangwang.com/doc/b26aead8710c46420b4b74ce20 kz 2 2 kHz Rev. A | Page 3 of 28 AD8226 ARZ, ARMZ BRZ, BRMZ = 1 25 Typ Max Min Typ Max Unit Settling Time 0.01% 10 V step 25 μs G = 10 Slew Rate G = 1 kΩ/RG) 0.4 15 0.4 Gain Range 5 to 1000 0.3 RL ≥ 2 kΩ 15 μs G = 100 V/μs 1 1 40 G = 5 to 100 0.6 40 μs G = 1000 0.6 350 350 μs V/μs GAIN G = 1 V/V Gain Error VOUT ±10 V 0.1 % Gain Nonlinearity VOUT = ?10 V to ppm G = 100 RL ≥ 2 kΩ G (49.4 G = 1 % G = 10 V G = 1 to 10 ppm G = 1000 RL ≥ 2 kΩ ppm 2 Gain vs. Temperature to 125°C 5 ±1.35 V to G = 1 TA = ?40°C to 2 ppm/°C G > 1 TA = ?40°C to 36 V 85°C 125°C Input Impedance GΩ||pF Common Mode 0.4||2 5 1 ppm/°C ?100 Differential TA = 85°C ?100 ppm/°C S = 0.8||2 0.8||2 0.4||2 GΩ||pF 3 Input Operating Voltage RangeTA = 25°C ?VS ? 0.1 VS ? 0.8 ?VS ? 0.1 VShttp://www.wendangwang.com/doc/b26aead8710c46420b4b74ce 125°C ?VS ? 0.05 0.9 ?VS ? 0.15 40 ?VS 40 VS ? 40 TA = 125°C ?VS 1.2 VS ? 0.6 V 0.8 0.4 ?VS 40 V OUTPUT 25°C ?VS VS – 1.0 ?VS 0.4 0.4 Output Swing VS ? 0.7 ?VS VS – 1.0 V VS – 1.1 V RL = 10 kΩ to Ground V TA TA = ?40°C ?VS ? 0.15 VS ? 0.9 V Input Overvoltage Range TA = ?40°C to Ground 1.1 ?VS VS ? 0.6 ?VS ? 0.05 ? 125°C VS ? VS ? RL = 2 kΩ to 0.4 VS ? 0.7 V TA = ?40°C ?VS TA = = 25°C ?VS 1.2 0.2 TA = VS – VS ? 文档下载 免费文档下载 http://www.wendangwang.com/ 0.2 ?VS V 0.2 VS ? 0.2 V TA = ?40°C ?VS TA = ?40°C to Current ±1.35 13 0.2 TA = VS ? 0.2 ?VS 125°C ?VS 0.1 85°C 0.3 0.2 VS ? 0.3 ?VS 0.1 Operating Range Dual-supply operation ±1.35 25°C 450 ?40 ?40 VS ? 0.3 VS ? 0.1 V Short-Circuit 350 350 μA 450 TA = ?40°C 250 μA 125°Chttp://www.wendangwang.com/doc/b26aead8710c46420b4b74ce TEMPERATURE RANGE 0.3 VS ? 0.2 V RL = 100 kΩ to Ground VS ? 0.1 ?VS 13 mA POWER SUPPLY V Quiescent Current TA = = 125°C ?VS 250 μA TA 525 525 TA = μA °C The input stage uses pnp transistors; therefore, input bias current always flows into the part. The values specified for G > 1 do not include the effects of the external gain-setting resistor, RG. 3 Input voltage range of the AD8226 input stage. The input range depends on the common-mode voltage, the differential voltage, the gain, and the reference voltage. See the Input Voltage Range section for more information. 12 Rev. A | Page 4 of 28 HHAD8226 VS = 2.7 V, ?VS = 0 V, VREF = 0 V, TA = 25°C, G = 1, RL = 10 kΩ, specifications referred to input, unless otherwise noted. Table 3. 文档下载 免费文档下载 http://www.wendangwang.com/ Parameter COMMON-MODE REJECTION RATIO (CMRR) CMRR with DC to 60 Hz G = 1 G = 10 G = 100 G = 1000 CMRR with DC at 5 kHz G = 1 G = 10 G = 100 G = 1000 NOISE Voltage Noise Input Voltage Noise, eNI Outpuhttp://www.wendangwang.com/doc/b26aead8710c46420b4b74cet Voltage Noise, eNO RTI G = 1 G = 10 G = 100 to 1000 Current Noise VOLTAGE OFFSET Input Offset, VOSI Average Temperature Coefficient Output Offset, VOSO Average Temperature Coefficient Offset RTI vs. Supply (PSR) G = 1 G = 10 G = 100 G = 1000 INPUT CURRENT Input Bias Current1 Average Temperature Coefficient Input Offset Current Average Temperature Coefficient REFERENCE INPUT RIN IIN Voltage Range Reference Gain to Output Reference Gain Error DYNAMIC RESPONSE Small-Signal ?3 dB Bandwidth G = 1 G = 10 G = 100 G = 1000 文档下载 免费文档下载 http://www.wendangwang.com/ ARZ, ARMZ BRZ, BRMZ Conditions Min Typ VCM = 0 V to 1.7 V 105 110 dB 100 100 dB Total noise: eN = √(eNI2 1 kHz 105 22 110 80 dB 22 nV/√z 80 120 80 dB 90 90 dB 90 100 dB 105 dB 90 dB 90 (eNO/G2 120 nV/√z f = 0.1 Hz to 10 Hz 2.0 http://www.wendangwang.com/doc/b26aead8710c46420b4b74ce 2.0 μV p-p 0.5 0.5 μV p-p 10 Hz 3 = ?40°C to 3 0.4 0.4 μV p-p f = 1 kHz 110 125°C 0.5 2 dB TA = 5 30 5 30 nA TA = ?40°C to nA TA = ?40°C 7 μA kHz ?VS 160 100 pA p-p Total offset voltage: VOS = VOSI 0.5 1 μV/°C 5 μV/°C VS = 0 V to 1.7 V 105 100 80 nA TA =?40°C to VSS 160 kz VS 1 1 20 20 kz V/V 2 70 90 70 125°C 0.01 (VOSO μV TA μV TA = ?40°C to dB 25°C 5 20 5 20 nA TA = 125°C fA/√Hz f = 0.1 Hz to 100 5 0.01 dB 105 2 10 1 110 dB 125°C 5 15 5 15 nA TA = ?40°C pA/°C TA = 5 105 125°C 25°C pA/°C nA TA = 100 % 125°C 100 kΩ 1500 7 1500 2 kz Rev. A | Page 5 of 28 AD8226 Parameter Conditions Settling Time 0.01% 2 V step G = 1 Slew Rate G = 1 G = 5 to 100 GAIN G = 1 G = 10 G = 100 (49.4 kΩ/RG) Gain Range G = 1000 Gain Error G = 1 VOUT = 0.8 V to 1.8 V http://www.wendangwang.com/doc/b26aead8710c46420b4b74ceG = 5 to 1000 VOUT = 0.2 V to 2.5 V 2 文档下载 免费文档下载 http://www.wendangwang.com/ Gain vs. Temperature G = 1 TA = ?40°C to = ?40°C to S = 0 V, 85°C TA = 85°C to 125°C G > 1 TA 125°C VS = 2.7 V to 36 V Input Impedance Differential Common Mode TA = ?40°C TA = 3 Input Operating Voltage RangeTA = Overvoltage Range TA = ?40°C to 25°C 125°C Input 125°C OUTPUT ARZ, ARMZ BRZ, BRMZ Min Typ 0.6 6 0.6 V/μs 1 ppm/°C 0.4||2 5 VS ? 0.1 0.1 VS ? 0.1 V 6 6 μs 1 1 V/V 2 ppm/°C 0.4||2 GΩ||pF ?0.1 0.9 V ?0.05 0.1 6 μs VS ? 0.6 ?0.05 ?100 35 35 μs 0.04 350 350 μs 0.01% % 0.3 ppm/°C VS ? 0.7 ?0.1 VS ? 0.6 V 0.4 0.1% % 0.8||2 VS ? 0.7 V ?0.15 VS ? 40 ?VS 0.4 5 0.8||2 GΩ||pF VS ? 0.9 ?0.15 40 V/μs VS ? 40 ?VS VS ? 40 文档下载 免费文档下载 http://www.wendangwang.com/ Output Swing Short-Circuit Curhttp://www.wendangwang.com/doc/b26aead8710c46420b4b74cerent POWER SUPPLY Operating Range Quiescent Current TEMPERATURE RANGE 12 RL = 10 kΩ to 1.35 V, TA = ?40°C to 125°C Single-supply operation TA = 25°C, ?VS = 0 V, = 0 V, 13 500 VS = 2.7 V TA = ?40°C, ?VS = 0 V, VS = 2.7 V TA = 13 mA 2.2 425 500 μA 125°C, ?VS = 0 V, 36 2.2 475 550 36 V 325 400 475 550 μA ?40 VS = 2.7 V TA = 85°C, ?VS VS = 2.7 V 325 400 μA ?40 250 325 250 325 μA 425 °C Input stage uses pnp transistors; therefore, input bias current always flows into the part. The values specified for G > 1 do not include the effects of the external gain-setting resistor, RG. 3 Input voltage range of the AD8226 input stage. The input range depends on the common-mode voltage, the differential voltage, the gain, and the reference voltage. 文档下载 免费文档下载 http://www.wendangwang.com/ See the Input Voltage Range section for more information. http://www.wendangwang.com/doc/b26aead8710c46420b4b74ceRev. A | Page 6 of 28 AD8226 THERMAL RESISTANCE ABSOLUTE MAXIMUM RATINGS Table 4. θJA is specified for a device in free air. Supply Voltage ±18 V Table 5. Thermal Resistance Output Short-Circuit Current Indefinite JAMaximum Voltage at ?IN or IN ?VS IN 40 V 8-Lead MSOP, 4-Layer JEDEC Board 135 °C/W Minimum Voltage at ?IN or VS ? 40 V 8-Lead SOIC, 4-Layer JEDEC Board 121 °C/W REF Voltage ±VS Storage Temperature Range ?65°C to 150°C ESD CAUTION Specified Temperature Range ?40°C to Maximum Junction Temperature 140°C Human Body Model 1.5 kV Charge Device Model 1.5 kV 125°C 文档下载 免费文档下载 http://www.wendangwang.com/ Machine Model 100 V Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated ihttp://www.wendangwang.com/doc/b26aead8710c46420b4b74cen the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. A | Page 7 of 28 AD8226 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS –IN RGRG IN VSVOUTREF–VS 07036-002 文档下载 免费文档下载 http://www.wendangwang.com/ TOP VIEW(Not to Scale) Figure 2. Pin Configuration Table 6. Pin Function Descriptions Pin No. Mnemonic Description Negative Input. 2, 3 RG Gain-Setting Pins. Place a gain resistor between these two pins. 4 IN Positive Input. SSupply. 6 REF Reference. This pin must be driven by low impedance. OUT SSupply. Rev. A | Page 8 of 28 AD8226 TYPICAL PERFORMANCE CHARACTERISTICS T = 25°C, VS = ±15 V, RL = 10 kΩ, unless otherwise noted. S Thttp://www.wendangwang.com/doc/b26aead8710c46420b4b74ceIH1 文档下载 免费文档下载 http://www.wendangwang.com/ –900–600 –30003006009003 0-63V0OSO @ ±15V (?V) 70Figure 3. Typical Distribution of Output Offset Voltage S TIH2 –9–6 –3036930-63V0OSO DRIFT (?V) 70Figure 4. Typical Distribution of Output Offset Voltage Drift S TIH3 –400 –200 020040030-63V0OSI @ RG PINS @ ±15V (?V) 70Figure 5. Typical Distribution of Input Offset Voltage 250 文档下载 免费文档下载 http://www.wendangwang.com/ 200 S 150 TIH100 4 –1.2 –0.9–0.6 –0.3 00.30.60.91.2 30-63V0OSI DRIFT (?V) 70Figure 6. Typical Distribution of Input Offset Voltage Drift, G = 100 180 150 120 S 文档下载 免费文档下载 http://www.wendangwang.com/ TIH5 18 202224 26 30-63POSITIVE I0BIAS CURRENT @ ±15V (nA) 70Figure 7. Typical Distribution of Input Bias Current 300://www.wendangwang.com/doc/b26aead8710c46420b4b74cepar 250 200 S TIH150 100 506–0.9–0.6 –0.300.30.60.9 30-63V0OSI @ ±15V (nA) 文档下载 免费文档下载 http://www.wendangwang.com/ 70Figure 8. Typical Distribution of Input Offset Current Rev. A | Page 9 of 28 AD8226 2.5 2.5 2.0 COMMON-MODE VOLTAGE (V) COMMON-MODE VOLTAGE (V) 2.0 1.5 1.5 1.0 0.5 文档下载 免费文档下载 http://www.wendangwang.com/ 1.0 0.50–0.5–1.0–0.5 00.5 2.01.01.5 OUTPUT VOLTAGE (V) 2.53.0 –0.5–0.5 00.5 2.01.0 1.5 OUTPUT VOLTAGE (V) 2.53.0 Figure 9. Input Common-Mode Voltage vs. Output Voltage, Single Supply, VS = 2.7 V, G = 1 Figure 12. Input Common-Mode Voltage vs. Output Voltage, 文档下载 免费文档下载 http://www.wendangwang.com/ Single Supply, VS = 2.7 V, G = 100 5 5 COMMON-MODE VOLTAGE (V)://www.wendangwang.com/doc/b26aead8710c46420b4b74cer COMMON-MODE VOLTAGE (V) 44 3 3 2 2 11 –1–0.5 00.51.0 1.52.02.53.03.5OUTPUT VOLTAGE (V) 4.04.55.05.5 文档下载 免费文档下载 http://www.wendangwang.com/ –1–0.5 00.51.0 1.52.02.53.03.5OUTPUT VOLTAGE (V) 4.04.55.05.5 Figure 10. Input Common-Mode Voltage vs. Output Voltage, Single Supply, VS = 5 V, G = 1 Figure 13. Input Common-Mode Voltage vs. Output Voltage, Single Supply, VS = 5 V, G = 100 6 6 COMMON-MODE VOLTAGE (V) COMMON-MODE VOLTAGE (V) 44 2 2 文档下载 免费文档下载 http://www.wendangwang.com/ 00 –2 –2 –4 –4 –6–6 –4 –202OUTPUT VOLTAGE (V) 46 –6–6 –4 –202OUTPUT VOLTAGE (V) 46 Figure 11. Input Common-Mode Voltage vs. Output Voltage, Dual Supplies, VS = ±5 V, Fighttp://www.wendangwang.com/doc/b26aead8710c46420b4b74ceure G = 14. 1 Input 文档下载 免费文档下载 http://www.wendangwang.com/ Common-Mode Voltage vs. Output Voltage, Dual Supplies, VS = ±5 V, G = 100 Rev. A | Page 10 of 28 2015COMMON-MODE VOLTAGE (V) AD8226 20 COMMON-MODE VOLTAGE (V) 151050–5–10–15 1050–5–10–15 –20–20 –15–10 5–50 OUTPUT VOLTAGE (V) 文档下载 免费文档下载 http://www.wendangwang.com/ 101520 –20–20 –15–10 5–50 OUTPUT VOLTAGE (V) 101520 Figure 15. Input Common-Mode Voltage vs. Output Voltage, Dual Supplies, VS = ±15 V, G = 1 Figure 18. Input Common-Mode Voltage vs. Output Voltage, Dual Supplies, VS = ±15 V, G = 100 OUTPUT VOLTAGE (V) 0.6 0.50.40.3 0.60.5 文档下载 免费文档下载 http://www.wendangwang.com/ 0.40.30.20.10 OUTPUT VOLTAGE (V) INPUT CURRENT (mA) 0.20.10 –0.1–0.2–0.3–0.4–0.5 –0.1–0.2–0.3–0.4–0.5 07http://www.wendangwang.com/doc/b26aead8710c46420b4b74ce036-044 Figure 16. Input Overvoltage Performance, G = 1, VS = 2.7 V Figure 19. Input Overvoltage Performance, G = 100, VS = 2.7 V OUTPUT VOLTAGE (V) 0.5 0.40.3 INPUT CURRENT (mA) OUTPUT VOLTAGE (V) 0.6 文档下载 免费文档下载 http://www.wendangwang.com/ 0.50.40.30.20.1 0–0.1–0.2–0.3–0.4–0.5 07036-048 0.10–0.1–0.2–0.3–0.4 Figure 17. Input Overvoltage Performance, G = 1, VS = ±15 V 07036-04 5 –0.5–40–35–30–25–20–15–10–50510152025303540 INPUT VOLTAGE (V)–0.6–40–35–30–25–20–15–10–50510152025303540 INPUT VOLTAGE (V) Figure 20. Input Overvoltage Performance, G = 100, VS = ±15 V Rev. A | Page 11 of 28 INPUT CURRENT (mA) 0.2 07036-047 文档下载 免费文档下载 http://www.wendangwang.com/ –0.6–40–35–30–25–20–15–10–50510152025303540 INPUT VOLTAGE (V)–0.6–40–35–30–25–20–15–10–50510152025303540 INPUT VOLTAGE (V) ://www.wendangwang.com/doc/b26aead8710c46420b4b74cearINPUT CURRENT (mA) AD8226 302928INPUT BIAS CURRENT (nA) NEGATIVE PSRR (dB) 07036-04 9 2726252423222120191817 16–0.5 0.5 1.01.52.02.53.03.5COMMON-MODE VOLTAGE (V) 文档下载 免费文档下载 http://www.wendangwang.com/ 4.04.5110 1001kFREQUENCY (Hz) 10k100k1M Figure 21. Input Bias Current vs. Common-Mode Voltage, VS = PSRR vs. Frequency 504540INPUT BIAS CURRENT (nA) 35302520151050 07036-05 GAIN (dB) –12 –8–4048COMMON-MODE VOLTAGE (V) 12161k 10k100kFREQUENCY (Hz) 1M10M 5 V Figure 24. Negative 文档下载 免费文档下载 http://www.wendangwang.com/ Figure 22. Input Bias Current vs. Common-Mode Voltage, VS = ±15 V Figure 25. Gain vs. Frequency, VS = ±15 V POSITIVE PSRR (dB) GAIN (dB) 07036-013 110 1001kFREQUENCY (Hz) 10k100k1M1k ://www.wendangwang.com/doc/b26aead8710c46420b4b74cepar10k100kFREQUENCY (Hz) 1M10M Figure 23. Positive PSRR vs. Frequency, RTI Figure 26. Gain vs. Frequency, 2.7 V Single Supply Rev. A | Page 12 of 28 07036-016 0.1100 07036-01 文档下载 免费文档下载 http://www.wendangwang.com/ 5 –5–16100 07036-01 4 0.1 160 140AD8226 125150 INPUT BIAS CURRENT (nA) 120100 100 07036-017 75 50 文档下载 免费文档下载 http://www.wendangwang.com/ 25 110 1001k FREQUENCY (Hz) 10k100k0 1530456075TEMPERATURE (°C) 90 Figure 27. CMRR vs. Frequency, RTI Figure 30. Input Bias Current and Input Offset Current vs. Temperature 120 100 20 10GAIN ERROR (?V/V) –10–20–30–40–50 CMRR (dB) 文档下载 免费文档下载 http://www.wendangwang.com/ –60 07036-018 07036-05107036-052 0.1 110 1001k FREQhttp://www.wendangwang.com/doc/b26aead8710c46420b4b74ceUENCY (Hz) 10k100k –70 –60–40–20020406080 TEMPERATURE (°C) 100120140 Figure 28. CMRR vs. Frequency, RTI, 1 kΩ Source Imbalance vs. Temperature, G = 1 3.0CHANGE IN INPUT OFFSET VOLTAGE (?V) 2.52.01.51.00.50–0.5–1.0–1.5–2.0–2.5 Figure 31. Gain Error 文档下载 免费文档下载 http://www.wendangwang.com/ 07036-011 20 10 CMRR (?V/V) –10–20 –30 10 20 30 405060708090WARM-UP TIME (Seconds) 100110120 –3.0 –40–50 –30–10 文档下载 免费文档下载 http://www.wendangwang.com/ 10305070TEMPERATURE (°C) 90110130 Figure 29. Change in Input Offset Voltage vs. Warm-Up Time Figure 32. CMRR vs. Temperature, G = 1 Rev. A | Page 13 of 28 07036-01 2 0.1–45–30–150 105120135 INPUT OFFSET CURRENT (pA) CMRR (dB) AD8226 V ://www.wendangwang.com/doc/b26aead8710c46420b4b74cepar 文档下载 免费文档下载 http://www.wendangwang.com/ INPUT VOLTAGE (V)REFERRED TO SUPPLY VOLTAGES OUTPUT VOLTAGE SWING (V) –V07036-053 246 81012SUPPLY VOLTAGE (±VS) 141618 1k10kLOAD RESISTANCE (?) 100k 07036-056 100 Figure 33. Input Voltage Limit vs. Supply Voltage Figure 36. Output Voltage Swing vs. Load Resistance V V –0.2 文档下载 免费文档下载 http://www.wendangwang.com/ OUTPUT VOLTAGE SWING (V)REFERRED TO SUPPLY VOLTAGES OUTPUT VOLTAGE SWING (V)REFERRED TO SUPPLY VOLTAGES 07036-054 –0.4–0.6–0.8 –V2 4 6 81012SUPPLY VOLTAGE (±VS) 14 16 18 100?1MOUTPUT CURRENT (A) 10M 07036-057 –V10? 文档下载 免费文档下载 http://www.wendangwang.com/ Figure 34. Output Voltage Swing vs. Supply Voltage, RL = 10 kΩ Figure 37. Output Voltage Swing vs. Output Current, G = 1 V86 G = 1 OUTPUhttp://www.wendangwang.com/doc/b26aead8710c46420b4b74ceT (V)REFERRED TO SUPPLY VOLTAGES NONLINEARITY (2ppm/DIV) –V420–2–4–6 07036-05 5 SUPPLY VOLTAGE (±VS) –8–6–4 –2024OUTPUT VOLTAGE (V) 6810 07036-019 VOLTAGE SWING 文档下载 免费文档下载 http://www.wendangwang.com/ –8–10 Figure 35. Output Voltage Swing vs. Supply Voltage, RL = 2 kΩ Figure 38. Gain Nonlinearity, G = 1, RL ≥ 2 kΩ Rev. A | Page 14 of 28 8 6 AD8226 NONLINEARITY (2ppm/DIV) 420–2–4–6 07036-02 NOISE (nz) –8–6–4 –2024OUTPUT VOLTAGE (V) 文档下载 免费文档下载 http://www.wendangwang.com/ 6810 FREQUENCY (Hz) Figure 39. Gain Nonlinearity, G = 10, RL ≥ 2 kΩ Figure 42. Voltage Noise Spectral Density vs. Frequency NONLINEARITY (20ppm/DIV) 07036-02 4 07036-021 –10 –8–6–4 –2024OUTPUT VOLTAGE (V) 6810http://www.wendangwang.com/doc/b26aead8710c46420b4b74ce Figure 40. Gain Nonlinearity, G = 100, RL ≥ 2 kΩ Figure 43. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 1, G = 1000 文档下载 免费文档下载 http://www.wendangwang.com/ NONLINEARITY (100ppm/DIV) 1k NOISE (fz) –200–400–600 07036-022 100 –8–6–4 –2024OUTPUT VOLTAGE (V) 6810110 100 FREQUENCY (Hz) 1k10k Figure 41. Gain Nonlinearity, G = 1000, RL ≥ 2 kΩ Figure 44. Current Noise Spectral Density vs. Frequency Rev. A | Page 15 of 28 文档下载 免费文档下载 http://www.wendangwang.com/ 07036-058 –800 –10 10 07036–8–10 AD8226 5 2 0-63070 Figure 45. 0.1 Hz to 10 Hz Current Noise 302724) p-p 21(V E18AGTL15VO TU12PTU9O630100 1k 文档下载 免费文档下载 http://www.wendangwang.com/ 10k 100k1M FREQUENCY (Hz) Figure 46. Large-Signal Frequency Response 60-63070 http://www.wendangwang.com/doc/b26aead8710c46420b4b74ceFigure 47. Pulse Response and Settling Time, G = 1, 10 V Step, VS = ±15 V 1 60-63070Figure 48. Large-Signal Pulse Response and Settling Time, G = 10, 10 V Step, VS = ±15 V 2 60-63070 Figure 49. Large-Signal Pulse Response and Settling Time, Large-Signal 文档下载 免费文档下载 http://www.wendangwang.com/ G = 100, 10 V Step, VS = ±15 V 3 60-63070Figure 50. Large-Signal Pulse Response and Settling Time, G = 1000, 10 V Step, VS = ±15 V Rev. A | Page 16 of 28 6 20-63070 Figure 51. Small-Signal Response, G = 1, RL = 10 kΩ, CL = 100 pF 20-6307 Figure 52. Small-Signal Response, G = 10, RL = 10 kΩ, CL = 100 pF AD8226 820-6307 7 文档下载 免费文档下载 http://www.wendangwang.com/ Figure 53. Small-Signal Response, G = 100, RL = 10 kΩ, CL = 100 pF 9 20-63070 Figure 54. Small-Signal Reshttp://www.wendangwang.com/doc/b26aead8710c46420b4b74ceponse, G = 1000, RL = 10 kΩ, CL = 100 pF Rev. A | Page 17 of 28 AD8226 30-63070 Figure 55. Small-Signal Response with Various Capacitive Loads, G = 1, RL = ∞ 60 50 文档下载 免费文档下载 http://www.wendangwang.com/ ) s?40 ( EMIT 30 NGILTTSE20 10 4 60-6300702 4 6 8 101214 16 18 20 STEP SIZE (V) 文档下载 免费文档下载 http://www.wendangwang.com/ Figure 56. Settling Time vs. Step Size, VS = ±15 V Dual Supplies 340 330 ) A?( TN320 RERUC Y L310 PUPS300 290 6 024 681012141618 60-63SUPPLY VOLTAGE (±V0S) 70Figure 57. Supply Current vs. Supply Voltage 文档下载 免费文档下载 http://www.wendangwang.com/ Rev. A | Page 18 of 28 AD8226 S GAIN STAGE AMPLIFIER STAGE 07036-003 ://www.wendangwang.com/doc/b26aead8710c46420b4b74ceTHEORY OF OPERATION OUT Figure 58. Simplified Schematic ARCHITECTURE The AD8226 is based on the classic 3-op-amp topology. This topology has two stages: a preamplifier to provide differential amplification, followed by a difference amplifier to remove the common-mode voltage. Figure 58 shows a simplified schematic 文档下载 免费文档下载 http://www.wendangwang.com/ of the AD8226. The first stage works as follows: in order to maintain a constant voltage across the bias resistor RB, A1 must keep Node 3 a con-stant diode drop above the positive input voltage. Similarly, A2 keeps Node 4 at a constant diode drop above the negative input voltage. Therefore, a replica of the differential input voltage is placed across the gain-setting resistor, RG. The current that flow through the R1 the flows across this resistance must also and R2 resistors, creating a gained differential signal between A2 and A1 outputs. Note that, http://www.wendangwang.com/doc/b26aead8710c46420b4b74cein addition to a gained differential signal, the original common-mode signal, shifted a diode drop up, is also still present. The second stage is a difference amplifier, composed of A3 and four 50 kΩ resistors. The purpose of this stage is to remove the common-mode signal from the amplified differential signal. The transfer function of the AD8226 is VOUT = G(VIN ? VIN?) VREF where: GAIN SELECTION Placing a resistor across the RG terminals sets the gain of the AD8226, which can be calculated by referring to Table 7 or by using the following gain equation: RG= 49.4kΩG?1 文档下载 免费文档下载 http://www.wendangwang.com/ Table 7. Gains Achieved Using 1% Resistors 1% Standard Table Value of RG (Ω) Calculated Gain 49.9 k 1.990 12.4 k 4.984 5.49 k 9.998 2.61 k 19.93 1.00 k 50.40 G=1 49.4kΩRG The AD8226 defaults to G = 1 when no gain resistor is used. The tolerancehttp://www.wendangwang.com/doc/b26aead8710c46420b4b74ce and gain drift of the RG resistor should be added to the AD8226 specifications to determine the total gain accu-racy of the system. When the gain resistor is not used, gain error and gain drift are minimal. If a gain of 5 is required and minimal gain drift is important, consider using the AD8227. The AD8227 has a default gain of 5 that is set with internal resistors. Because all resistors are internal, the gain drift is extremely low ( Rev. A | Page 19 of 28 AD8226 VCM?VCM 文档下载 免费文档下载 http://www.wendangwang.com/ REFERENCE TERMINAL The output voltage of the AD8226 is developed with respect to the potential on the reference terminal. This is useful when the output signal needs to be offset to a precise midsupply level. For example, a voltage source can be tied to the REF pin to level-shift the output so that the AD8226 can drive a single-supply ADC. The REF pin is protected with ESD diodes and shhttp://www.wendangwang.com/doc/b26aead8710c46420b4b74ceould not exceed either VS or ?VS by more than 0.3 V. For the best performance, source impedance to the REF terminal should be kept below 2 Ω. As shown in Figure 58, the reference terminal, REF, is at one end of a 50 kΩ resistor. Additional impedance at the REF terminal adds to this 50 kΩ resistor and results in amplification of the signal connected to the positive input. The amplification from the additional RREF can be computed by 2(50 kΩ RREF)/(100 kΩ RREF). is unaffected. Only the positive signal path is amplified; the negative path This uneven amplification degrades CMRR. INCORRECT CORRECT (V)(G) >?VS V?LIMIT (1) 2 (V)(G) 文档下载 免费文档下载 http://www.wendangwang.com/ (VDIFF)(G) VCM VREF 2Table 8. Input Voltage Range Constants for Various Temperatures ?LIMIT ?40°C ?0.55 V V LIMIT 25°C ?0.35 V 0.8 V 85°C ?0.15 V 0.7 125°C ?0.05 V V 0.65 V 0.6 V://www.wendangwang.com/doc/b26aead8710c46420b4b74cear VREF_LIMIT 1.3 V 1.15 V 1.05 V 0.9 V Performance Across Temperature The common-mode input range shifts upward with temper-ature. At cold temperatures, the part requires extra headroom from the positive supply, and operation near the negative supply has more margin. Conversely, hot temperatures require less headroom from the positive supply, but are the worst-case conditions for input voltages near the negative supply. 0Recommendation for Best Performance Figure 59. Driving the Reference Pin INPUT VOLTAGE RANGE 文档下载 免费文档下载 http://www.wendangwang.com/ Figure 9 through Figure 15 and Figure 18 show the allowable common-mode input voltage ranges for various output voltages and supply voltages. The 3-op-amp architecture of the AD8226 applies gain in the first stage before removing common-mode voltage with the difference amplifier stage. Internal nodes between the first and second stages (Node 1 and Node 2http://www.wendangwang.com/doc/b26aead8710c46420b4b74ce in Figure 58) experience a combination of a gained signal, a common-mode signal, and a diode drop. This combined signal can be limited by the voltage supplies even when the individual input and output signals are not limited. For most applications, Figure 9 through Figure 15 and Figure 18 provide sufficient information to achieve a good design. For applications where a more detailed understanding is needed, Equation 1 to Equation 3 can be used to understand how the gain (G), common-mode input voltage (VCM), differential input voltage (VDIFF), and reference voltage (VREF) interact. The values for the constants, V?LIMIT, V LIMIT, and VREF_LIMIT, are shown in Table 8. These three formulas, along with the input and output range specifications in Table 2 and Table 3, set the operating boundaries of the part. A typical part functions up to the boundaries described in this section. However, for best designihttp://www.wendangwang.com/doc/b26aead8710c46420b4b74ceng performance, with a few hundred millivolts extra margin is recommended. As signals approach the boundary, internal transistors begin to saturate, which can affect frequency and linearity performance. If the application requirements exceed the boundaries, one solution is to apply less gain with the AD8226, and then apply additional gain later in the signal chain. Another option is to use the pin-compatible AD8227. LAYOUT 文档下载 免费文档下载 http://www.wendangwang.com/ To ensure optimum performance of the AD8226 at the PCB level, care must be taken in the design of the board layout. to aid in The AD8226 pins are arranged in a logical manner this task. –INRGRG IN VSVOUTREF (Not to Scale) 07036-005 –VS Figure 60. Pinout Diagram Rev. A | Page 20 of 28 AD8226 INPUT BIAS CURRENT RETURN PATH The input bias current of the AD8226 must have a return path to ground. When the souhttp://www.wendangwang.com/doc/b26aead8710c46420b4b74cerce, such as a thermocouple, cannot provide a return current path, one should be created, as shown in Figure 62. INCORRECT 文档下载 免费文档下载 http://www.wendangwang.com/ VS Common-Mode Rejection Ratio Over Frequency Poor layout can cause some of the common-mode signals to be converted to differential signals before reaching the in-amp. Such conversions occur when one input path has a frequency response that is different from the other. To keep CMRR across frequency high, the input source impedance and capacitance of each path should be closely matched. Additional source resistance in the input path (for example, for input protection) should be placed close to the in-amp inputs, which minimizes their interaction with parasitic capacitance from the PCB traces. Parasitic capacitance at the gain-setting pins can also affect CMRR over frequency. If the board design has a component at the gain-setting pins (for example, a switch or jumper), the phttp://www.wendangwang.com/doc/b26aead8710c46420b4b74ceart should be chosen so that the parasitic capacitance is as small as possible. CORRECT –V S TRANSFORMER –VS TRANSFORMER Power Supplies 文档下载 免费文档下载 http://www.wendangwang.com/ A stable dc voltage should be used to power the instrumentation amplifier. Note that noise on the supply pins can adversely affect performance. For more information, see the PSRR performance curves in Figure 23 and Figure 24. A 0.1 μF capacitor should be placed as close as possible to each supply pin. As shown in Figure 61, a 10 μF tantalum capacitor can be used farther away from the part. In most cases, it can be shared by other precision integrated circuits. –V S THERMOCOUPLE VS THERMOCOUPLE AD8226 C f HIGH-PASS REF 07036-007 文档下载 免费文档下载 http://www.wendangwang.com/ –VS CAPACITIVELY COUPLED CAPACITIVELY COUPLED Fhttp://www.wendangwang.com/doc/b26aead8710c46420b4b74ceigure 62. Creating an IBIAS Path Figure 61. Supply Decoupling, REF, and Output Referred to Local Ground References The output voltage of the AD8226 is developed with respect to the potential on the reference terminal. Care should be taken to tie REF to the appropriate local ground. Rev. A | Page 21 of 28 AD8226 07036-008 INPUT PROTECTION 文档下载 免费文档下载 http://www.wendangwang.com/ The AD8226 has very robust inputs and typically does not need additional input protection. Input voltages can be up to 40 V from the opposite supply rail. For example, with a 5 V positive supply and a ?8 V negative supply, the part can safely withstand voltages from ?35 V to 32 V. Unlike some other instrumentation amplifiers, the part can handle large differen-tial input voltages even when the part is in high gain. Figure 16, Figure 17, Figure 19, and Figure 20 show the behavior of the part under overvolhttp://www.wendangwang.com/doc/b26aead8710c46420b4b74cetage conditions. The rest of the AD8226 terminals should be kept within the supplies. All terminals of the AD8226 are protected against ESD. For applications where the AD8226 encounters voltages beyond the allowed limits, external current-limiting resistors and low-leakage diode clamps such as the BAV199L, the FJH1100s, or the SP720 should be used. Figure 63. RFI Suppression RADIO FREQUENCY INTERFERENCE (RFI) RF rectification is often a problem when amplifiers are used in applications having strong RF signals. The disturbance can appear as a small dc offset voltage. High frequency signals can be filtered with a low-pass RC network placed at the input of the instru-mentation amplifier, as shown in Figure 63. The filter limits the input signal bandwidth according to the following relationship: CD affects the difference signal and CC affects the common-mode signal. Values of R ahttp://www.wendangwang.com/doc/b26aead8710c46420b4b74cend CC should be chosen to minimize RFI. Mismatch between the R × CC at the positive input and the R × CC at 文档下载 免费文档下载 http://www.wendangwang.com/ the negative input degrades the CMRR of the AD8226. By using a value of CD that is one magnitude larger than CC, the effect of the mismatch is reduced and performance is improved. FilterFrequencyDIFF=FilterFrequencyCM=where CD ≥ 10 CC. 1 2πR(2CD CC) 1 2πRCC Rev. A | Page 22 of 28 AD8226 Tips for Best Differential Output Performance For best ac performance, an op amp with at least a 2 MHz gain bandwidth and a 1 V/μs slew rate is recommended. Good choices for op amps are the AD8641, AD8515, and AD820. Keep trace lengths from the resistors to the inverting terminal of the op amp as short 文档下载 免费文档下载 http://www.wendangwang.com/ as possible. Excessive capacitance at this node can cause the circuit to be unstable. If capacitance cannot be avoided, ushttp://www.wendangwang.com/doc/b26aead8710c46420b4b74cee lower value resistors. For best linearity and ac performance, a minimum positive supply voltage ( VS) is required. Table 9 shows the minimum supply voltage required for optimum performance. In this mode, VCM_MAX indicates the maximum common-mode voltage expected at the input of the AD8226. Table 9. Minimum Positive Supply Voltage Less than ?10°C VBIAS)/2 VS > (VCM_MAX 1.25 V More than 25°C VBIAS)/2 1.4 V ?10°C to 25°C VS > (VCM_MAX VBIAS)/2 VS > (VCM_MAX 1.1 V APPLICATIONS INFORMATION DIFFERENTIAL DRIVE RECOMMENDED OPAMPS:AD8515,AD8641,AD820.RECOMMENDED RVALUES: 5k? to 20k?. 07036-009 Figure 64. Differential Output Using an Op Amp Figure 64 shows how to configure the AD8226 for differ- ential output. The differential output is set by the following equation: 文档下载 免费文档下载 http://www.wendangwang.com/ VDIFF_OUT = VOUT ? VOUT? = Gain × (VIN ? VIN?) Thttp://www.wendangwang.com/doc/b26aead8710c46420b4b74cehe common-mode output is set by the following equation: VCM_OUT = (VOUT ? VOUT?)/2= VBIAS The advantage of this circuit is that the dc differential accuracy depends on the AD8226, not on the op amp or the resistors. In addition, this circuit takes advantage of the precise control that the AD8226 has of its output voltage relative to the reference voltage. Although the dc performance and resistor matching of the op amp affect the dc common-mode output accuracy, such errors are likely to be rejected by the next device in the signal chain and therefore typically have little effect on overall system accuracy. Rev. A | Page 23 of 28 AD8226 Option 1 shows the minimum configuration required to drive a charge-sampling ADC. The capacitor provides charge to the ADC sampling capacitor while the resistor shields the AD8226 from the capacitance. To keep the AD8226 stable, the RC time conhttp://www.wendangwang.com/doc/b26aead8710c46420b4b74cestant of the resistor and capacitor needs to stay above 5 μs. This circuit is mainly useful for lower frequency signals. Option 2 shows a circuit for driving higher speed signals. It uses a precision op amp (AD8616) with relatively high bandwidth and output drive. This amplifier can drive a resistor and capacitor with a much higher time constant and is therefore suited for higher frequency applications. 文档下载 免费文档下载 http://www.wendangwang.com/ 07036-010 PRECISION STRAIN GAGE The low offset and high CMRR over frequency of the AD8226 make it an excellent candidate for performing bridge measure-ments. The bridge can be connected directly to the inputs of the amplifier (see Figure 65). Figure 65. Precision Strain Gage DRIVING AN ADC Figure 66 shows several methods for driving an ADC. The ADuC7026 microcontroller was chosen for this example because it contains ADCs with an unbuffered, charge-sahttp://www.wendangwang.com/doc/b26aead8710c46420b4b74cempling architecture that is typical of most modern ADCs. This type of architecture typically requires an RC buffer stage between the ADC and amplifier to work correctly. Option 3 is useful for applications where the AD8226 needs to run off a large voltage supply but drive a single-supply ADC. In normal operation, the AD8226 output stays within the ADC range, and the AD8616 simply buffers it. However, in a fault condition, the output of the AD8226 may go outside the supply range of both the AD8616 and the ADC. This is not an issue in the circuit, however, because the 10 kΩ resistor between the two amplifiers limits the current into the AD8616 to a safe level. 文档下载 免费文档下载 http://www.wendangwang.com/ OPTION 1: DRIVING LOW FREQUENCYSIGNALS 07036-065 Figure 66. Driving an ADC Rev. A | Page 24 of 28 AD8226 OUTLINE DIMENSIONS 0.95PLANE 0.230.08 0.10 ://www.wendangwang.com/doc/b26aead8710c46420b4b74cerCOMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 67. 8-Lead Mini Small Outline Package [MSOP] 文档下载 免费文档下载 http://www.wendangwang.com/ (RM-8) Dimensions shown in millimeters 0.25 (0.0098)0.10 (0.0040)COPLANARITY 0.10 0.17 (0.0067) COMPLIANTTO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONSARE IN MILLIMETERS; INCH DIMENSIONS(INPARENTHESES)ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FORREFERENCE ONLYANDARE NOTAPPROPRIATE FOR USE IN DESIGN. 012407-A Figure 68. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) 文档下载 免费文档下载 http://www.wendangwang.com/ ORDERING GUIDE Package Branding 1 AD8226ARMZ?40°C to 125°C 8-Lead MSOP RM-8 Y18 AD8226ARMZ-RL1?40°C to 125°C 8-Lead MSOP, 13" Tape and Reel RM-8 Y18 1 AD8226ARMZ-R7?40°C to 125°C 8-Lead MSOP, 7" Tape and Reel RMhttp://www.wendangwang.com/doc/b26aead8710c46420b4b74ce-8 Y18 AD8226ARZ1?40°C to 125°C 8-Lead SOIC_N R-8 AD8226ARZ-RL1?40°C to 125°C 8-Lead SOIC_N, 13" Tape and Reel R-8 1 AD8226ARZ-R7?40°C to to 125°C 8-Lead SOIC_N, 7" Tape and Reel R-8 AD8226BRMZ1?40°C 125°C 8-Lead MSOP RM-8 Y19 1 AD8226BRMZ-RL?40°C to AD8226BRMZ-R71?40°C to 125°C 8-Lead MSOP, 13" Tape and Reel RM-8 Y19 125°C 8-Lead MSOP, 7" Tape and Reel RM-8 Y19 1 AD8226BRZ?40°C to 125°C 8-Lead SOIC_N R-8 AD8226BRZ-RL1?40°C to 125°C 8-Lead 文档下载 免费文档下载 http://www.wendangwang.com/ SOIC_N, 13" Tape and Reel R-8 1 AD8226BRZ-R7?40°C to 125°C 8-Lead SOIC_N, 7" Tape and Reel R-8 1 Z = RoHS Compliant Part. Rev. A | Page 25 of 28 AD8226 NOTES Rev. A | Page 26 of 28 AD8226 NOTES Rev. A | Page 27 of 28 文档下载 免费文档下载 http://www.wendangwang.com/ AD8226 NOTES ?2009 Analog Devices, Inhttp://www.wendangwang.com/doc/b26aead8710c46420b4b74cec. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07036-0-7/09(A) Rev. A | Page 28 of 28 文档下载网是专业的免费文档搜索与下载网站,提供行业资料,考试资料,教 学课件,学术论文,技术资料,研究报告,工作范文,资格考试,word 文档, 专业文献,应用文书,行业论文等文档搜索与文档下载,是您文档写作和查找 参考资料的必备网站。 文档下载 http://www.wendangwang.com/ 亿万文档资料,等你来发现