Download Section 1.4 pp

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Section 1.4
Positive Integer Exponents
Objectives: Use the properties of exponents
This section is prepared by M. Zalzali
Repeated Form and Exponent form
Exponents are used as a short-hand form for repeated multiplication.
Instead of writing
aaaaa
We write
a
Repeated Form
5
Exponent Form
Note “a” has been repeated 5 times, that’s why we wrote
a
5
a5 is read “ a to the fifth power’
a = Base, 5 = Power,
Example 1
Fill out the table with the correct answer
Repeated Form
7777
bbbbbb
(2x)(2x)(2x)
3 x  1
2
(2x+9)(2x+9)(2x+9)
Exponent Form
7
4
b6
2 x 3
(3x-1)(3x-1)
2 x  93
Rules and Properties of
Positive Integer Exponents
For any real number a and natural numbers m and n.
a a  a
m
First property
n
m n
Simplify each expression. ( Write in exponent form )
Example 1
i ) 10 10 
5
2
10
ii )  3  3 
5
15
iii ) 6b  6b   6b 
2
7
 3
20
7
5
iv )  xy xy 
xy
2
…
Simplifying Expressions
Note: When we multiply two expressions, we have to take into consideration the associative and
commutative properties of multiplication when needed.
Simplify the product
Example 2
2 x 5  6 x 2  2  6  x5  x 2  12 x 5 2  12x 7
Simplify the product
Class Exercise
6
15x
i) 5 x 3x  
3 4
2
3
ii ) 4a b 5ab  20a b
4
2
iv ) 2 x 3x   6x 2



iii ) 2c d 12cd  24c d
2
3
3
3
6
…
For any real number a , a  0,and natural numbers m and n.
m>n
m
Second Property
Example 3
a
mn
a
n
a
Simplify the expressions
x5
3
a  2  x
x
y14
c  5 
y
y
9
3 5
 35a 8b 6

25
m
n
4
5 2
5mn
b  3 4   5a b d 

2
7a b
 5m n
…
For any real number a and natural numbers m and n.
a 
m n
Third Property
Example 4
a
Simplify the expressions
a  x   x  x
16
2 8
b  a   a
6
2 3
c  10   10
3 5
35
15
mn
…
For any real number a and b , and natural number m
ab
m
Fourth Property
Example 5
a b
m m
Simplify the expressions
(a)  xy5  x 5 y 5
4


10
a
 10 4 a 4
(b)
(c)
2 p
2
q

3 3
3
  q 
 2 p
2 3
3 3
6
 8p q
9
…
For any real number a and b,
b0
and natural number m
m
am
a
   m
b
b
Fifth Property
Example 6
(a)  x 
2
Simplify the expressions
3
  
 y 
x 
2 3
6
x
 3
3
y
y
4
4 4
16
a
2
a
(b)  2a   4 
4
3
b
b
b 
4
…
Simplify the expressions
Class Exercise
Answers :
3
 5x 
a   2  
y 
  2a b
b  
5
c

3
4
2

 

a 
125 x 3
y6
b 
4a 6b 8
c10
…
For any real number a , a  0
a 1
0
Zero Exponent
Example 7
Simplify the expressions
a  10
0
 1
b  6x  61  6
2 3 0
c  a b   1
0
Home Work
Do the selected exercises from the syllabus
Section 1.4
The end
Related documents