Download Infinite Limits and Limits to Infinity: Horizontal and Vertical Asymptotes

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Infinite Limits and
Limits to Infinity: Horizontal
and Vertical Asymptotes
Recall…
• The notation
lim f ( x)  
x c
tells us how the
limit fails to exist by denoting the unbounded
behavior of f(x) as x approaches c.
• Infinity is not a number!
Properties of Infinite Limits
•
Let c and L be real numbers and let f and g be
functions such that
lim f ( x)   and lim g ( x)  L
x c
x c
f ( x)  g ( x)] 
1. Sum or difference: lim[
x c
1
Consider: f ( x)  x 2
lim[ f ( x)  g ( x)] 
x 0

g ( x)  2

lim f ( x) 

lim g ( x) 
2
x 0
x 0
Properties of Infinite Limits
•
Let c and L be real numbers and let f and g be
functions such that
lim f ( x)   and lim g ( x)  L
x c
x c

if L < 0 lim[ f ( x) g ( x)]  
f ( x) g ( x)] 
1. Product: if L > 0 lim[
x c
x c
1
Consider: f ( x)  x 2
lim[ f ( x) g ( x)] 
x 0

g ( x)  2
lim f ( x)  
x 0
lim g ( x)  2
x 0
Properties of Infinite Limits
•
Let c and L be real numbers and let f and g be
functions such that
lim f ( x)   and lim g ( x)  L
x c
x c
1. Quotient: lim  g ( x)  
x c  f ( x) 


1
Consider: f ( x)  x 2
 g ( x) 
lim 


x 0
 f ( x) 
0
0
g ( x)  2
lim f ( x)  
x 0
lim g ( x)  2
x 0
Definition - Vertical Asymptotes
• If f(x) approaches infinity (or negative
infinity) as x approaches c from the left or
the right, then the line x = c is a vertical
asymptote of the graph of f.
Determining Infinite Limits
3
f ( x) 
x
4
g ( x)  2
x
2
h( x )   3
x

lim f ( x )  
lim g ( x)  
lim g ( x)  
lim f ( x) 
x 0
x  0
x  0
x  0
lim h( x) 
x  0
lim h( x) 
x 0


The pattern…
Is c even or
odd?
p ( x)
f ( x)  c , where p( x) is a polynomial
x and c is a positive integer
odd
Sign of
p(x) when
x=c
positive
odd
negative
even
positive
even
negative
lim f ( x)
x 0
lim f ( x)
x 0








Using the pattern…
3 x
lim

x 0
x

x3  2 x  3
lim

2
x 0
x
2x 1
lim 5 
x 0
x


3 x
lim

x 0
x

x3  2 x  3
lim

2
x 0
x
2x 1
lim 5 
x 0
x


Using the pattern…
3x 6  6
lim

10
x 0
x

x 2  3x
lim
x 0
x2
x3
 lim

x 0
x

3x 6  6
lim

10
x 0
x

x 2  3x
lim
2
x 0
x
x3
 lim

x 0
x

Limits at Infinity
• lim f ( x)  L denotes that as x
x 
increases without bound, the function
value approaches L
• L can have a numerical value, or the
limit can be infinite if f(x) increases
(decreases) without bound as x
increases without bound
Horizontal Asymptotes
• The line y = L is a horizontal asymptote of f if
lim f ( x)  L
x 
or
lim f ( x)  L
x 
• Notice that a function can have at most two
HORIZONTAL asymptotes (Why?)
4
2
-5
lim f ( x)  ______
0
5
-2
x 
lim f ( x)  ______
0
x 
-4
Horizontal Asymptote(s):__________
4
2
-5
lim f ( x)  ______
2
5
-2
x 
lim f ( x)  ______
2
x 
-4
Note: It IS possible for a graph to cross
its horizontal asymptote!!!!!!
Horizontal Asymptote(s):__________
4
2
-5
lim f ( x)  ______
0
x 
5
-2
lim f ( x)  ______
1
x 
Horizontal Asymptote(s):__________
-4
4
2
-10
-5
5
10
-2
lim f ( x)  ______
0
x 
lim f ( x)  ______
0
x 
Horizontal Asymptote(s):__________
Theorem – Limits at Infinity
1. If r is a positive rational number and c is
any real number, then
c
lim r 
x  x
0
c
lim r 
x  x
0
The second limit is valid only if xr is
defined when x < 0
lim e  0
x 
x
x
lim e  0
x 
Using the Theorem
5
lim 13 
x  x
5
lim  0
x  x
5
5
lim  2  lim  lim 2 
x  x
x  x
x 
x
lim e  0
x 
0
2
lim 2e  lim 2  lim e  0
x
x
x 
x 
x
Guidelines for Finding Limits at
±∞ of Rational Functions
less than
1. If the degree of the numerator is ___________
the degree of the denominator, then the limit of
the rational function is ___.
0
2. If the degree of the numerator is equal
_______
to the
degree of the denominator, then the limit of the
the ratio of the
rational function is the __________________
leading coefficients
_______________________.
than
3. If the degree of the numerator is greater
___________
the degree of the denominator, then the limit of
is infinite
the rational function _______________.
Using the Guidelines…
x3  2 x  3
lim 4
 0
2
x  x  3 x  x
6 x8  12 x  17
lim

x  18 x8  13 x 2  24
1
3
2 x3  9 x  3
lim 3

x  x  7 x 2  1
2
x5  5 x  6
lim 3

x  x  2 x 2  8
∞
Related documents