Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
University of Kansas Instructor: Le Chen Math526: Probability and Statistics Class 4172-52503 (2017 Spring) Homework of Weeks 4 & 5 Due on Feb. 21 3.38. It is helpful to fill the table first. fX,Y px, yq x “ 0 1 2 3 fY pyq y“0 0 30 1 30 2 30 3 30 6 30 1 1 30 2 30 3 30 4 30 10 30 2 2 30 3 30 4 30 5 30 14 30 fX pxq 3 30 6 30 9 30 12 30 1 Table 1: The joint distribution function for Ex. 3.38. (a) P pX ď 2, Y “ 1q “ fX,Y p0, 1q ` fX,Y p1, 1q ` fX,Y p2, 1q “ (b) P pX ą 2, Y ď 1q “ fX,Y p3, 0q ` fX,Y p3, 1q “ 3`4 30 “ 1`2`3 30 “ 51 . 7 . 30 (c) P pX ą Y q “ fX,Y p1, 0q ` fX,Y p2, 0q ` fX,Y p3, 0q ` fX,Y p2, 1q ` fX,Y p3, 1q ` fX,Y p3, 2q 1`2`3`3`4`5 “ 30 3 “ . 5 (d)P pX ` Y “ 4q “ fX,Y p2, 2q ` fX,Y p3, 1q “ 1 4`4 30 “ 4 . 15 3.44. (a) ż 50 ż 50 dx 30 ż 50 2 2 dypx ` y q “ 30 ˆ dx 30 ż 50 “ “ “ “ ˙ˇy“50 y 3 ˇˇ x y` 3 ˇy“30 2 ˆ 503 ´ 303 dx x p50 ´ 30q ` 3 30 ˆ 3 ˙ˇ50 x 503 ´ 303 ˇˇ p50 ´ 30q ` x ˇ 3 3 30 ˘ 2` 3 50 ´ 303 p50 ´ 30q 3 3920000 . 3 (1) ˙ 2 (2) (3) (4) (5) Hence, k“ 3 . 3920000 (b) By similar calculation as those in (a), ż 40 P p30 ă X ă 40, 40 ă Y ă 50q “ ż 50 dx 30 dy 40 3 px2 ` y 2 q 3920000 1 “ . 4 (6) (7) (c) By similar calculation as those in (a), ż 40 ż 40 30 “ dy dx P p30 ă X ă 40, 30 ă Y ă 40q “ 30 3 px2 ` y 2 q 3920000 37 . 196 (8) (9) 3.49. (a) The marginal distribution of X is x fX pxq 1 0.1 2 0.35 3 0.55 3 0.5 5 0.3 (b) The marginal distribution of Y is y 1 fY pyq 0.2 (d) P pY “ 3|X “ 2q “ P pY “ 3, X “ 2q 0.1 2 “ “ . P pX “ 2q 0.35 7 3.56. Note that the domain 0 ă x ă 1, 0ăy ă1´x (10) 0 ă y ă 1, 0 ă x ă 1 ´ y, (11) can be equivalently written as which is clear from the graph below. 2 y 1 x o 1 (a) To show that X and Y are not independent, we need to calculate their marginal distribution functions: If x P p0, 1q, then ż 1´x 6xdy (12) fX pxq “ 0 “ 6xp1 ´ xq. (13) If x R p0, 1q, then fX pxq “ 0. Hence, # 6xp1 ´ xq if x P p0, 1q, fX pxq “ 0 otherwise. (14) Similarly, if y P p0, 1q, then ż 1´y fY pyq “ 6xdx (15) “ 3p1 ´ yq2 . (16) 0 If y R p0, 1q, then fY pyq “ 0. Hence, # 3p1 ´ yq2 fY pyq “ 0 if y P p0, 1q, otherwise. (17) Therefore, X and Y are not independent because fX,Y px, yq ‰ fX pxqfY pyq. (b) To calculate the conditional probability, we need to find the conditional distribution function first. For x and y in the right domain (i.e., x and y satisfy the conditions (10)), fX,Y px, yq fY pyq 2x “ . p1 ´ yq2 fX px|Y “ yq “ (18) (19) Hence, if y P p0, 1q, 2x fX px|Y “ yq “ p1 ´ yq2 % 0 $ & 3 if 0 ă x ă 1 ´ y, otherwise. (20) Therefore, for y P p0, 1q, ż `8 fX px|Y “ yqdx P pX ą 0.3|Y “ yq “ (21) ż0.3 1´y 2x dx 2 0.3 p1 ´ yq ˇx“1´y x2 ˇˇ “ p1 ´ yq2 ˇ “ (22) (23) x“0.3 “1´ 0.09 . p1 ´ yq2 (24) In particular, if y “ 0.5, we have P pX ą 0.3|Y “ 0.5q “ 1 ´ 0.09 16 “ . 2 p1 ´ 0.5q 25 4.2. We first calculate all the probability distribution function ˆ ˙ ˆ ˙0 ˆ ˙3 3 1 3 33 f p0q “ “ 1 ˆ 1 ˆ 3, 0 4 4 4 ˆ ˙ ˆ ˙1 ˆ ˙2 3! 3 1 3 1 32 33 f p1q “ “ ˆ ˆ 2 “ 3, 1 4 4 2!1! 4 4 4 ˆ ˙ ˆ ˙2 ˆ ˙1 1 3 32 3 3! 3 1 ˆ 2 ˆ “ 3, f p2q “ “ 4 4 1!2! 4 4 4 2 ˆ ˙ ˆ ˙3 ˆ ˙0 1 3 3 3! 1 1 f p3q “ “ ˆ 3 ˆ 1 “ 3. 3 4 4 3!0! 4 4 Therefore, EpXq “ f p0q ˆ 0 ` f p1q ˆ 1 ` f p2q ˆ 2 ` f p3q ˆ 3 “ 0 ˆ 33 ` 33 ` 2 ˆ 32 ` 3 3 “ . 3 4 4 4.4. Suppose the probability of tail is p, then the probability of head is 3p. Because p ` 3p “ 1, we see that p “ 1{4. The sample space is S “ tpH, Hq, pH, T q, pT, Hq, pT, T qu. Let X be the number of tails in the two tosses. The two tosses are independent. Hence, ˆ ˙2 3 fX p0q “ P pX “ 0q “ P ptpH, Hquq “ , 4 fX p1q “ P pX “ 1q “ P ptpT, Hq, pH, T quq “ P ptpT, Hquq ` P ptpH, T quq 1 3 3 1 3 “ ˆ ` ˆ “ 4 4 4 4 8 ˆ ˙2 1 fX p2q “ P pX “ 2q “ P ptpT, T quq “ P ptpT, T quq “ . 4 4 Therefore, ˆ ˙2 ˆ ˙2 3 3 1 1 EpXq “ 0 ˆ `1ˆ `2ˆ “ . 4 8 4 2 4.12. ż8 xf pxqdx EpXq “ ´8 ż1 2xp1 ´ xqdx ˆ ˙ˇx“1 ˇ 2 1 “ x2 ´ x ˇˇ “ . 3 3 x“0 “ 0 Hence, the average profit per automobile is 5000{3 « 1667 USD. 4.17. µgpXq “ EpgpXqq “ gp´3qf p´3q ` gp6qf p6q ` gp9qf p9q 1 1 1 “ 25 ˆ ` 169 ˆ ` 361 ˆ “ 209. 6 2 3 4.23. (a) EpXY 2 q “ ÿ ÿ xy 2 f px, yq x“2,4 y“1,3,5 2 “2 ˆ 1 ˆ 0.10 ` 2 ˆ 32 ˆ 0.20 ` 2 ˆ 52 ˆ 0.10 4 ˆ 12 ˆ 0.15 ` 4 ˆ 32 ˆ 0.30 ` 4 ˆ 52 ˆ 0.15 “35.20. (b)The marginal law of X and Y are x 2 fX pxq 0.4 4 0.6 and y 1 fY pyq 0.25 3 0.5 5 0.25 Hence, µX “ 2 ˆ 0.4 ` 4 ˆ 0.6 “ 3.2 and µY “ 1 ˆ 0.25 ` 3 ˆ 0.5 ` 5 ˆ 0.25 “ 3. 5 4.26. ż1 ż1 dy 4xy dx EpZq “ a x2 ` y 2 ż01 ż01 a dpx2 ` y 2 q 2x x2 ` y 2 0 0 ˇy“1 ż1 1 px2 ` y 2 q 2 `1 ˇˇ “ dx 2x ˇ ˇ 1 ` 12 0 y“0 ż1 2 32 3 p1 ` x q ´ x dx 4x “ 3 0 ż1 ż1 4 2 32 4x 2 2p1 ` x q dp1 ` x q “ ´ dx 3 3 0 0 ˇ1 ˇ1 3 4x5 ˇˇ 2p1 ` x2 q 2 `1 ˇˇ “ ˇ ´ 3 ˆ 5 ˇ0 3p1 ` 32 q ˇ dx “ 0 9{2 4 ´4 ´ 15 15 29{2 ´ 8 “ . 15 “ 2 4.30. ż8 xf pxqdx (25) x ´x{4 e dx 4 (26) ErXs “ ż´8 8 “ 0 ż8 xde´x{4 “´ (27) 0 ż8 ˇx“8 “ ´xe ´ e´x{4 dp´xq ˇ x“0 0 ż8 “0´0` e´x{4 dx 0 ˇx“8 ˇ “ ´4e´x{4 ˇ “ ´p0 ´ 4q “ 4. ´x{4 ˇ (Integration by parts) x“0 4.34. We first find the mean of X µX “ ´2 ˆ 0.3 ` 3 ˆ 0.2 ` 5 ˆ 0.5 “ 2.5. Then we calculate EpX 2 q “ p´2q2 ˆ 0.3 ` 32 ˆ 0.2 ` 52 ˆ 0.5 “ 15.5. Hence, the variance of X is equal to 2 σX “ EpX 2 q ´ µ2X “ 9.25. 6 (28) (29) Finally, σX “ ? 9.25 “ 3.041. 4.57. 1 1 1 11 `6ˆ `9ˆ “ , 6 2 3 2 1 1 1 93 ErX 2 s “ p´3q2 ˆ ` 62 ˆ ` 92 ˆ “ , 6 2 3 2 ErXs “ p´3q ˆ (30) (31) Therefore, Erp2X ` 1q2 s “ Er4X 2 ` 4X ` 1s “ 4ErX 2 s ` 4ErXs ` 1 93 11 “4ˆ `4ˆ ` 1 “ 209. 2 2 4.62. Because X and Y are independent, σXY “ 0. Hence, 2 σZ2 “ p´2q2 σX ` 42 σY2 ` 2 ˆ p´2q ˆ 4 ˆ σXY “ 4 ˆ 5 ` 16 ˆ 3 ` 0 “ 68. 4.63. 2 σZ2 “ p´2q2 σX ` 42 σY2 ` 2 ˆ p´2q ˆ 4 ˆ σXY “ 4 ˆ 5 ` 16 ˆ 3 ´ 16 “ 52. 7 (32) (33) (34)