* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Download Density functional calculations show noncovalent interactions
Survey
Document related concepts
Transcript
Densityfunctionalcalculations
shownoncovalentinteractions
drivingelectrocatalysis
KlemensNoga1,3,PiotrP.Romańczyk2,Mariusz Radoń3,StefanS.Kurek2
1
AcademicComputerCenter CYFRONET,ul.Nawojki 11,30-950Kraków,Poland
2
MolecularElectrochemistryGroup,FacultyofChemicalEngineeringandTechnology,
CracowUniversityofTechnology,ul.Warszawska 24,31-155Kraków,Poland
3
FacultyofChemistry,Jagiellonian University,ul.Ingardena 3,30-060Kraków,Poland
klemens.noga@cyfronet.pl,piotrom@chemia.pk.edu.pl
Scientificinterests
• Electrontransfermechanismbetweenredoxcentresin
mixed-valencemolybdenumandtungstenscorpionates
involvedinelectrocatalysis
• Dissociativeelectrontransfer(DET)processesin
dehalogenationoforganichalides
• Roleofnoncovalentinteractionsinelectrocatalysis andDET
processes
• Computationalestimationofreductionandoxidation
potentialsoftransitionmetalcomplexesandorganic
compounds
MoandWscorpionate alkoxides
{MoII(NO)(TpMe2)}(OCH3)2
Reversibleredoxpotentialfine
tunedbyalkoxy ligandRO-
• Redoxpotentialof{MII/I(NO)(TpMe2)−Oalk}0/•− (M=MoorW)well
reproducedbyDFT:B3LYP/LACV3P+/IEF-PCM:
• {Mo−OMe}0/•− - calculated:1.80V,measured:1.84V
• {W−OMe}0/•−- calculated:2.45V,measured:2.40V
• Strongmetal-metalinteractions(uptoΔredE1/21440mV)inmixedvalencecompoundswithtwo{MoII–0(NO+)(TpMe2)}2+,1+,0 cores
Electrocatalysis ofofCHCl3 dehalogenation
by{MoI(NO)(TpMe2)(Oalkoxy)}•−
Autocatalytic
process
ΔEred,CHCl3
~1V
ReductionofCHCl3by Hold-ramp-stepexperiment Inhibitionofreactionby
{MoI(NO)(TpMe2)(Oalkoxy)}•− provingstabilityofcatalyst
alkene
• CHCl3 - fastautocatalyticprocess
• CCl4 andC2Cl4 donotreactinthoseconditions,C2HCl5 andC2HCl3 typicalelectrocatalysis
Roleof{MoII/I(NO)(TpMe2)(Oalkoxy)}•− in
electrocatalysis - adducts
DFT-D(COSMO/B3LYP-D3/def2-TZVPP)geometriesof
{MoII/I(NO)(TpMe2)}(OCH3)2adductswithCHCl3
• Moscorpionates formweaklybondedadductswithCHCl3 through
C−H···Oalkoxy hydrogenbondanddispersiveinteractions
• AfterreductionofMocentre∆Ebind increases
Roleof{MoII/I(NO)(TpMe2)(Oalkoxy)}•− in
electrocatalysis - dehalogenation
DFT-D(COSMO/B3LYP-D3/def2-TZVPP)geometriesof
(a){MoI(NO)(TpMe2)}(OCH3)2•−···HCCl3adductwithelongatedC-Clbond(upto2.2Å)inCHCl3
(b){MoII(NO)(TpMe2)}(OCH3)2···HCCl2• adductafterDET
• Weaklybonded{MoI(NO)(TpMe2)}(OCH3)2•−···HCCl3adductfacilitates
electrontransfertochloroformcoupledwithC-Clbondcleavage
Roleof{WII/I(NO)(TpMe2)(Oalkoxy)}•− inC2HCl5
andC2HCl4•dehalogenation
DFT-D(COSMO/B3LYP-D3/def2-TZVPP)geometriesof
(a){WI(NO)(TpMe2)}(OCH3)2•−···HC2Cl5adduct
(b){WII(NO)(TpMe2)}(OCH3)2···HC2Cl4• adductafterDET
• Weaklybonded{WI(NO)(TpMe2)}(OCH3)2•−···HC2Cl5 adductalsofacilitates
electrontransfertopentachloroethane coupledwithC-Clbondcleavage
Thermodynamical stabilityofadducts
Adduct
{MoII−Oalk}0···HCCl3
{MoI−Oalk}•−···HCCl3
{MoII−Oalk}0···HCCl2•
{MoI−Oalk}•−···HC2Cl5
{MoI−Oalk}•−···HC2Cl3
{MoI−Oalk}•−···H2CCl2
{WI−Oalk}•−···HC2Cl5
{WII−Oalk}···HC2Cl4•
{WI−Oalk}•−···HC2Cl4•
{WI−Oalk}•−···HC2Cl3
{WI−Oalk}•−···H2CCl2
∆Ebind
−44.4
−52.3
−37.2
−53.6
−43.1
−37.7
−54.8
−46.4
−56.1
−44.4
−41.0
∆Gbind
0.8
−6,7
6.3
−2.9
1.3
3.8
−5.0
1.7
−5.4
0.4
1.7
inkJ·mol−1 inCH2Cl2 solvent,BSSEcorrected
• {MoI−Oalk}•−···HCCl3 and{WI−Oalk}•−···HC2Cl5stabilisationfacilitatesET
• Lowerstabilityof{MoII−Oalk}0···HCCl2•and{WII−Oalk}···HC2Cl4•enables
radicaldissociationandtriggersanothercatalyticloop
MolecularcatalysisofCHCl3 andC2HCl3 reduction
triggeredbyMo/Walkoxy scorpionates
• CHCl3dehalogenation- twocatalyticloops,withautocatalyticreaction:
2CHCl3 +CCl2•− +3e− →CH2Cl2 +2CCl2•− +2Cl−
• ForC2HCl3 evenmorecathodicWII/I redoxpotentialnotsufficienttoclose
secondorganicloop
Redoxpotentialsofcompoundsinvolved
inC2HCl5 reduction
Species
E0calc(DFT-D)
{WII−OMe}/{WI−OMe}•−
−2.45
{WIII−OMe}•+/{WII−OMe}
+0.68
C2HCl5/C2HCl4• +Cl−
−0.66
C2HCl4•/C2HCl3 +Cl−
+0.93
C2HCl3/cis-C2HCl2• +Cl−
−1.66
cis-C2HCl2•/cis-C2HCl2−
−0.42
cis-C2H2Cl2/cis-C2H2Cl• +Cl−
−1.97
cis-C2H2Cl•/C2H2 +Cl−
+0.99
C2Cl4/C2Cl4•−
−2.32 (−2.14)
C2Cl4/C2Cl3• +Cl−
−1.57
C2Cl3•/C2Cl3−
−0.24
C2HCl/C2H•···Cl−
−2.12
C2HCl/C2H• +Cl−
−2.72
C2HCl/C2H• +Cl−
−2.72
E0calc(CC)
–
–
−1.27(−1.01)
+0.80
−2.12(−1.86)
−0.48
−2.36(−2.10)
+0.91(+1.18)
−2.66(−2.48)
−2.09(−1.82)
−0.24
−2.55(−2.32)
−2.94(−2.68)
−2.94(−2.68)
E0exp
−2,40
+0.63
(−0.98)
(−1.86)
(−2.09)
(−2.11)
(−1.73)
inVvsFc,obtainedinCH2Cl2 solvent(orDMF)
• SignificantdifferencesbetweenDFT-DandCCresultsonlyinthecaseof
dissociativereduction(duetoerrorsinestimationofC-ClbondstrengthinDFT)
Inhibitionofcatalysis
DFT-D(COSMO/B3LYP-D3/def2-TZVPP)geometriesof
(a)alcohol adduct,(b)alkeneadduct
• AlcoholsformstrongerhydrogenbondthanCHCl3 andblockthebindingsite
• Alkenesand DMFarebondedsignificantlyweakerthanCHCl3
• whenaddedingreatexcess
• inhibitionoccurs bytrappingoftransientCHCl2•radicalbyalkeneor:CCl2byDMF
Roleofnoncovalentinteractionsin
electrocatalycis
ComparisonofDFT-D(sharp,Clatomsyellow)andDFT(diffused,Clatomsgreen)
(a){MoII−Oalk}··HCCl3, (b){MoI−Oalk}•−···HCCl3,(c){MoI−Oalk} 0···HCCl2•
• Significantdifferencesinadductsgeometries,especiallyin{MoI−Oalk}
0···HCCl •,wherehydrogenbondisweakerandhasdispersivecharacter
2
• Noncovalentinteractionsarecrucialforstabilisationofadductswith
weakhydrogenbond
Roleofnoncovalentinteractionsin
electrocatalysis
Adduct
{MoII−Oalk}0···HCCl3
{MoI−Oalk}•−···HCCl3
{MoII−Oalk}•−···HCCl2•
{MoI−Oalk}•−···HOCH3
{MoI−Oalk}•−···HC(=O)N(CH3)2a
{WI−Oalk}•−···H2C=CHCH3
DFT
4.2
−4.2
2.1
−22.2
10.5
12.6
DFT//DFT-D3
−32.2
−42.7
−23.8
−52.3
−22.6
−11.3
DFT-D3 Opt
−44.4
−52.3
−37.2
−56.1
−30.1
−22.6
∆Gbind inkJ·mol−1 inCH2Cl2 solvent(a inDMF),BSSEcorrected
• Noncovalentinteractionsarecrucialforstabilisationofadductswith
weakhydrogenbond
• Even{MoI−Oalk}•−···HOCH3 adductwithstrongH-bondshows
stabilisationeffectfromdispersiveinteractions
• GeometryoptimizationusingDFT-D3stronglyrecommended
Softwareremarksandcomputationaldetails
• Gaussian03andGaussian09
• usedforDFTgeometryoptimizationsandredoxpotentialscalculations
• widespectrumofsolvationmethods
• Turbomole 6.xand7.x
• usedforDFT-D3geometryoptimizations
• veryfastingeometryoptimizationsandBSSEestimations
• onlynumericalfrequenciescalculationswhenCOSMOmodelisused
• embarrassinglyparallelbutconsumebigamountofresources(upto120cores
forweek)
• Molpro 2012and2015
• usedforparallelCCSD(T)calculations
• canconsumegreatamountofresources(upto200coresforweeks)dueto
scalingfactorofO(N7)
Outcome
• Rationalizedmechanismofelectrocatalytic dehalogenationof
polychloroalkanes byMoandWscorpionate alkoxides anditsinhibition
• combinedactionofC−H···Oalk bondingandCl···πpyrazolyl dispersiveinteractionsmay
facilitateintramolecularelectrontransfer
• Shownthatdispersioninteractionscouldbecrucialforstabilisationof
weaklybondedadducts
• DFT-Dhastobeusedinsuchcasestoyieldreasonableresults
• Establishedcomputationalprotocolforcalculationofredoxpotentials
forinvestigatedMo/Walkoxides andfororganicchlorideswiththe
accuracyofupto0.05V
• ComputationalresourceshavebeenprovidedbyACCCyfronet AGH
whichispartofPLGrid Infrastructure
Publications
• P.P.Romańczyk,M.Radoń,K.Noga,S.S.Kurek,Autocatalyticcathodic
dehalogenationtriggeredbydissociativeelectrontransferthrougha
C−H···Ohydrogenbond,Phys.Chem.Chem.Phys. 15(2013)17522.
• P.P.Romańczyk,K.Noga,M.Radoń,G.Rotko,S.S.Kurek,Ontheroleof
noncovalentinteractionsinelectrocatalysis.Twocasesofmediated
reductivedehalogenation,Electrochim.Acta,110(2013)619.
• P.P.Romańczyk,G.Rotko,K.Noga,M.Radoń,G.Andryianau,S.S.Kurek,
TheeffectofC−H···ObondingandCl···πinteractionsinelectrocatalytic
dehalogenationofC2chloridescontaininganacidichydrogen,
Electrochim.Acta 140(2014)497.