* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Mouse embryonic stem cells can differentiate via multiple
Tissue engineering wikipedia , lookup
Cytokinesis wikipedia , lookup
Extracellular matrix wikipedia , lookup
Cell growth wikipedia , lookup
Cell encapsulation wikipedia , lookup
Organ-on-a-chip wikipedia , lookup
Cell culture wikipedia , lookup
Programmed cell death wikipedia , lookup
List of types of proteins wikipedia , lookup
Epigenetics in stem-cell differentiation wikipedia , lookup
bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 2 Mouseembryonicstemcellscandifferentiateviamultiplepathstothesame state 3 4 Authors:JamesA.Briggs1,*,VictorC.Li1,*,SeungkyuLee2,CliffordJ.Woolf2,AllonM.Klein1,+,andMarcW. Kirschner1,+ 5 6 7 Affiliations:1DepartmentofSystemsBiology,HarvardMedicalSchool,Boston,MA02115.2Department, ofNeurobiology,HarvardMedicalSchool,andFMKirbyNeurobiologyCenterBostonChildren’sHospital, Boston,MA02115. 8 9 * 10 11 Abstract 12 13 14 15 16 17 18 19 20 21 22 23 Inembryonicdevelopment,cellsmustdifferentiatethroughstereotypicalsequencesofintermediate statestogeneratematurestatesofaparticularfate.Bycontrast,directprogrammingcangenerate similarfatesthroughalternativeroutes,bydirectlyexpressingterminaltranscriptionfactors.Yetthecell statetransitionsdefiningthesenewroutesareunclear.Weappliedsingle-cellRNAsequencingto comparetwomousemotorneurondifferentiationprotocols:astandardprotocolapproximatingthe embryoniclineage,andadirectprogrammingmethod.Bothundergosimilarearlyneuralcommitment. Then,ratherthantransitioningthroughspinalintermediateslikethestandardprotocol,thedirect programmingpathdivergesintoanoveltransitionalstate.Thisstatehasspecificandabnormalgene expression.Itopensa‘loop’or‘wormhole’ingeneexpressionthatconvergesseparatelyontothefinal motorneuronstateofthestandardpath.Despitetheirdifferentdevelopmentalhistories,motor neuronsfrombothprotocolsstructurally,functionally,andtranscriptionallyresemblemotorneurons fromembryos. 24 25 Introduction 26 27 28 29 30 31 32 33 Embryonicdevelopmentproceedsthroughdefinedintermediatestates,suchasgermlayer intermediates,andlineage-specificprogenitors.Intermediatesbifurcateintomultiplestatesovertime, andspecializetheirbehaviors,ultimatelyproducingalineagetreethatdefineseachmaturecelltypeby aparticularsequenceofintermediates.Thiswasfirstappreciatedthroughclassicallineagetracingand cellablationstudies.Thesestudiesshowedthatspecificallylabeledintermediatestatesgenerate stereotypedsetsofdownstreamcelltypes,andthatthesedownstreamcelltypesfailtoformifan intermediatethatisupstreamintheirlineageisablated1,2.Furthermore,embryosingeneraldonot produceamaturecelltypethroughmultipledifferentiationpaths. 34 35 36 37 Incontrasttothisrigidandhierarchicalprocess,recentprotocolsthatexperimentallydirectly programcellfatesuggestthattheexactsequenceofintermediatesdefiningalineagemaybemore flexible3-11.Thesestudiesrevealthatmaturecellstatescanbereachedthroughpathsthatdonotinvolve activationoftheintermediateprogenitorgenesthatareessentialinembryos.Mouseembryonicstem 1 + Theseauthorscontributedequallytothiswork. Correspondence:marc@hms.harvard.edu;Allon_Klein@hms.harvard.edu 1 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 2 3 4 5 6 7 8 9 cells(mESCs),forexample,canbeconvertedintomotorneurons(MNs)byaprocessthatinvolves overexpressionofthreetranscriptionfactors,Ngn2+Isl1+Lhx33,12,andthatneverexpressestheneural progenitortranscriptionfactorsSox1andOlig23.mESCscanalsobedrivenrapidlyintoaterminalmuscle phenotypewithoutnormalupregulationofintermediategenessuchasPax7andMyf5,througha combinationofcell-cycleinhibitionandMyoDoverexpression4.Thisplasticityofdifferentiationextends further,totheinterconversionofmaturecellstates.Fibroblastscanbeconvertedintomatureneuron phenotypes6,11,includingMNs5,seeminglywithoutcompletelydedifferentiatingandretracingthe embryoniclineage,asindicatedbylackofexpressionofspecificcorepluripotency(Oct4,Sox2and Nanog)andneuralprogenitorgenes(Nestin)5. 10 11 12 13 14 15 16 17 18 19 20 21 Althoughthesedirectprogramming(DP)experimentsimplytheexistenceofdifferentiation pathsthatdifferfromthoseinembryos,muchofwhatactuallyoccursinthesenewprogramsremains mysterious.DoesDPbypassnormalintermediatesbyshort-circuitingthenaturallineage,ordoesit transitionthroughalternativeintermediates(Fig.1a)?Doesitdivergeonlybrieflytobypassspecificearly orlatestates,ordoesitutilizeanentirelydistinctpath(Fig.1b)?AndcanDPconvergefullytothesame finalstatethatisproducedinembryosdespitetakinganalternativepath(Fig.1c)?Thesequestionshave beenchallengingtoanswerinpartduetothehighdegreeofheterogeneityindirectprogramming experiments,whereunbiasedbulkmeasurementsofglobalgeneexpressionobscurechanges,andalso becausemarkergenesallowingtheisolationofnewbutpotentiallyimportantDP-specificintermediates arenotknowninadvance.HereweaimedtoovercometheseissuesbyapplyingsinglecellRNA sequencingtocomparethegeneexpressiontrajectoriesofDPandgrowthfactorguideddifferentiation ofmESCsovertimeintoMNs.OurcoreresearchquestionsaresummarizedinFigure1. 22 23 Results 24 DissectionoftwoMNdifferentiationprotocolsusingInDropssinglecellRNAsequencing 25 26 27 28 29 30 31 32 WecomparedtwoinvitrodifferentiationprotocolsthatconvertmESCsintoMNs.SpinalMNswere chosenforstudybecausetheseprotocolshavebeenhighlyoptimized.Thefirst,standardprotocol(SP)is awidelyusedmethodthatattemptstorecapitulatetheknownembryonicintermediatesthrough sequentialexposureofdevelopmentalsignals(Fgfs,RetinoicAcid,andSonichedgehog)(Fig.1A) 13,14.It providesanapproximationofthelineagethroughwhichmotorneuronsdevelopintheembryo.The second,directprogramming(DP)protocolinvolvesdrivingtheexpressionoftranscriptionfactors (Ngn2+Isl1+Lhx3)3,12thatcharacterizethematuremotorneuronstateandatthesametimefavoringand stabilizingtheG1statebyincubatinginagrowthfactorfreemedium4. 33 34 35 36 37 38 39 40 Weusedsingle-cellRNAsequencing(InDrops)15totrackthedifferentiationtrajectoriesofboth protocolsovertime(Figs.1Band1C).Single-celldatahasemergedasapowerfulwaytotrace differentiationprocesses,particularlyinpopulationsthatarenotpureandthatcontainrare intermediates11,16-20.Weprofiledatotalof4,590cellssampledfromearly(day4/5)andlate(day11/12) timepointsforeachprotocol,andalsousedourpreviouslypublisheddatafrom975mEScells15.To visualizethesinglecelldataandidentifycellstatesweappliedt-distributedstochasticneighbor embedding(tSNE)toreducedimensionality21,22,definedcellstatesusinganunsuperviseddensity gradientclusteringapproach,andthenfoundspecificmarkergeneswithknownannotationstoreveal 2 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 3 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 4 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 2 3 4 5 theidentityofeachstate(Fig.2B-2E;Supp.Figs.S1andS2;Supplementarymethods).Foreach protocol,thedominantfeaturewasacontinuousgeneexpressiontrajectorysweepingacrossthe2D plot.Thesetrajectoriescorrelatewithchronology:theybeginwithmESCs,passthroughneural progenitorstatesandterminateinmatureMNstates.Inbothprotocolswealsoobservedamixtureof off-targetdifferentiationbyproductsfromallthreegermlayers. 6 7 8 9 10 11 12 OursinglecelldataallowedustodefinetheefficiencyofMNproductionforeachmethod.For DP,MNproductionwasobservedasearlyasday4(19%),andincreasedovertimeto66%byday11(Fig. 2F).Aminorityofoff-targetneuronsubtypes,glia,andmiscellaneouscellswerealsoidentified.IntheSP 23%and9%ofthepopulationresembledMNsatdays5and12respectively(Fig.2G).Thislower efficiencywasaccompaniedbyafarlargerfractionofoff-targetproductsincludingoligodendrocytes (7.2%),astrocytes(8.6%),muscle(30.6%),andstroma(8.9%)thattogetheraccountedfor55.3%ofthe populationbyday12. 13 TheDPdifferentiationtrajectorylacksintermediatesexpressingOlig2andNkx6-1 14 15 16 17 18 19 20 21 22 23 24 25 26 Whatarethedifferentiationpathstakenbyeachprotocol?IntheSPdifferentiationpath,cellstransit throughsevenstates(Fig.2Cand2E).Thesestatetransitionsparallelpatterningeventsinthe embryo13,23,24:cellsfirstcommittotheneurallineage(Sox1+/Sox3+),thenareposteriorized (Hoxb8+/Hoxd4+),ventralized(Nkx6-1+/Olig2+),enterthecommittedMNprogenitorstate(Mnx1+),and thenmatureintoaneuronalphenotype(Tubb3+/Map2+).Thisisnotasurpriseasthegrowthfactor cocktaildefiningthismethodwasdesignedtoreflectthesignalingeventstakingplaceintheembryo.By contrast,wefoundthatthepathproducedbyDPwascondensedrelativetotheSPpath(Fig.2Band2D), consistingofonlyfourstatesasopposedtoseven.Afterneuralcommitment(Sox1+),cellsimmediately beganexpressingcommittedMNmarkers(Mnx1+/Tubb3+),seeminglywithoutthetypicalspinal embryonicintermediates(Olig2-/Nkx6-1-).AlackofOlig2expressionduringDPhasbeenobserved previously3,andourresultsconfirmatthesinglecelllevelthatintermediatesexpressingOlig2andNkx61appearentirelyabsent.Olig2isnecessaryforMNdevelopmentinembryos1,indicatingtheDPdrives differentiationfromESCintoMNsthroughanewroute. 27 28 29 30 Weconfirmedthatourinferreddynamicsfromsnapshotsingle-celldatacorrespondtothe actualunderlyingdifferentiationdynamicsbyperformingadenseqPCRtimecourseforapanelofMN genes(Supp.Fig.S3).Thesebulkmeasurementsconfirmedthat,forDP,committedMNmarkersare upregulatedimmediatelyfollowingearlyneuralprogenitorgenesinrealtime. 31 32 TheDPandSPtrajectoriesbifurcateafterearlyneuralcommitmentandconvergeseparatelytothe MNstate 33 34 35 36 37 38 39 40 SincetheDPomitsspinalembryonicintermediatescharacteristicoftheSPpath,theremustbeoneof twopossibletrajectories.EitherDPmustdiscontinuouslytransitionfromanearlyneuralprogenitorinto aMN,oritmusttransitthroughalternateintermediatestate(s).Todeterminewhichofthese possibilitieswasthecase,weemployedadatavisualizationtechniquecalledSPRING25todirectly comparethetopologyofbothpaths.WhiletSNEisapowerfulmethodforidentifyingdiscretecellstates, SPRINGprovidesacomplementarydescriptionemphasizingcontinuumgeneexpressiontopologies. SPRINGbuildsak-nearest-neighborgraphovercellsinhigh-dimensionalgeneexpressionspace,and thenrendersaninteractive2Dvisualizationofthecellgraphusingaforcedirectedlayout.This 5 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 6 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 2 3 4 representationrevealedthattheDPandSPtrajectoriesoverlapduringearlyneuralcommitment,but thattheythenbifurcateandtransitdistinctpathsthatconvergeindependentlytothesameMNstate (Fig.3A).Thedynamicsofgeneexpressionoverthesetrajectoriesresembledthebehaviorinferredusing tSNE,withDPomittingintermediateprogenitorgenesfollowingitsbifurcationfromtheSPpath(Fig.3B). 5 6 7 8 9 10 11 12 13 Thebifurcationandsubsequentconvergenceofthetwodifferentiationpathscanalsobe appreciatedbytwoothercomplementaryanalyses.Pairwisecosinesimilaritiesbetweenthecellstates frombothtrajectories(Fig.3C;Supplementarymethods)indicatesimilaritiesbetweentheearlystates (ESCandNP;cosinesimilarity>0.64)andlatestates(LMN;cosinesimilarity=0.55),butnotthe intermediatestates(PNP,PVNP,andMNP;cosinesimilarity<-0.28,-0.09,and0.06respectively).We alsoassignedeveryindividualcellalongtheDPpathtoitsmostsimilarclusterintheSPpathusinga maximumlikelihoodmethod(Fig.3D;Supplementarymethods).Thisshowedthatitwasvirtually impossibletofindasinglecellresemblingtheSPintermediateprogenitorsintheDPapproach.Similarity wasagainseenonlyattheearlyandlatestates. 14 DPtransitionsthroughanabnormalintermediatestatewithforebraingeneexpression 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 ThebifurcationoftheSPandDPtrajectoriesleadstodifferentintermediatecellstatesineachcase.A totalof26transcriptionfactors(TFs)aredifferentiallyexpressedbetweentheDPandSPintermediate states(Fig.4A).Amajorityofthese(61%)wereinvolvedinananterior-posteriorpositionalgene expressionaxis.TheSPintermediateswereenrichedmorethan6-foldfornineposteriorandspinalTFs includingOlig2,Nkx6-1,Lhx3,andsixHoxgeneswithacorrectedp-value<0.001.EachoftheseTFsis expressedinembryonicMNs.Bycontrast,theDPintermediateswereenrichedforsevenforebrainTFs includingOtx2,Otx1,Crx,Six1,Dmrta2,Zic1,andZic3atthesamestringency,despitetheabsenceof MNsintheforebrainofembryos.Anteriorgeneexpressionwaspreviouslyobservedthroughbulk measurementsofDP3,andourresultsrevealthatitoccurswithinaspecificsubpopulationofcellsinthe processofdifferentiatingintoMNs.Wevalidatedtheseexpressiondifferencesbyisolatingintermediate populationsofeachdifferentiationpathusingaMnx1::GFPreportercellline,sinceMnx1expressionis localizedpreciselytothedistinctintermediatepopulationsofeachpath(Fig.3B).Bulkcomparisonsof thesetwopopulationsconfirmedtheenrichmentofforebrainTFs,anddepletionofspinalprogenitor andpositionalgenesintheDPintermediateswithjustoneexception–Zic1wasenrichedinDPbyour singlecellcomparisonbutinSPbymicroarray(Fig.4A). 30 31 32 33 34 35 36 37 TheabnormalpositionalgeneexpressionsignaturethatcharacterizestheDPintermediatestate appearstransient.ForebraingeneexpressionisupregulatedalongtheDPdifferentiationpathascells exittheearlyNPstateintotheEMNintermediatestate(Fig.4B).Thistransitionisalsoaccompaniedby thedownregulationofproliferation-associatedgenes(Fig.4B;Supp.Fig.S4).Bythetimecellsexitthe EMNstateandtransitionintothemoredifferentiatedLMNstate,theydownregulateforebraingenes andreplacethisabnormalpositionalsignaturewithaspinalHoxexpressionsignaturecharacteristicof normalMNs(Fig.4B).ThuscellsconvergetotheMNstateinpositionalaswellasneuronalidentitygene expressioninthefinalstagesofDP. 38 BothDPandSPapproachatranscriptionalstatesimilartobona-fideMNsinembryos 39 40 Giventhatthetwoprotocolsinducedistinct–andinthecaseofDP,unnatural–differentiationpaths, wewerecurioushowtheirfinalproductscomparedwithprimaryMNs.WeharvestedMNsfromthe 7 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 8 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 embryoofaMnx1::GFPreportermouseandperformedinDropsmeasurementson874E13.5MNsafter FACSpurification.ThoughthemajorityofHb9+sortedcellswereMNs(73.8%),thispopulationalso containedglia(20.1%),fibroblast-likecells(1.8%),andimmune-typecells(1.2%;Fig.5A;Supp.Fig.S5). Usingonlythecellsidentifiedasbona-fideMNs,weprobedthesimilarityoftheinvitroderivedcellsto theprimaryMNs,usingthreemeasures:globalsimilarityofthetranscriptomes(cosinesimilarity);coclusteringfrequency;anddifferentialgeneexpressionanalysis.Inbothpaths,neuronsbecomemore similartoprimaryMNsovertime(Fig.5B).TheclustersmosthighlycorrelatedwithprimaryMNswere theLMNstatefromtheDPprotocol(cosinesimilarity=0.62),andtheLMNstatefromtheSP(cosine similarity=0.37).Notably,only2.7%ofoutputcellsfromtheSPwereintheLMNstate,comparedto 62.7%forDP.Thus,theratiooftheefficiencyofformingLMNsbytheDPprotocoltotheSPprotocolis 23fold,seven-foldhigherthanwhatwecalculatedbasedonacomparisonofmarkergenesalone.Atthe levelofsinglecells,co-clusteringofthedifferentexperimentsshowedthat95%ofDPMNsrobustlycoclusterwithprimaryMNscomparedwith26%forSPderivedMNs(Supp.Fig.S6).However,differential geneexpressionanalysisrevealedthatneitherprotocolperfectlyrecapitulatesthegeneexpression profileofMNsisolatedfromthemouse.BothprotocolsshowedadepletionofthemostposteriorHox genes,perhapsindicatingananteriorspinalcordidentityofinvitroMNs,andasmallenrichmentof severalgenesrelatedtomicrotubulefunctionandcellcycleexitthatmayindicatesubtledifferencesin neuronalmaturation(Supp.Fig.S7). 19 DPMNshavestructuralandfunctionalpropertiesoftrueMNs 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 HavingestablishedthatMNsderivedviabothgeneexpressiontrajectoriesreachroughlythesameMN transcriptionalstate,wewishedtovalidatethattheirfunctionandstructuralorganizationwasalso independentoftheirdistinctdevelopmentalhistories.TheSPhasbeencharacterizedextensivelyas givingrisetofunctionalMNs13,sohereweexaminedstructuralandfunctionalcharacteristicsfollowing DP.WeconfirmedthatselectedproteincontentmatchesthemRNAmarkersbyimmunostainingfor Tubb3,Map2,VACht,Isl1,andHb9(Fig.5C).Tubb3andMap2werepresent,andVAChtwasseenat discretepunctaontheaxons(suggestinglocalizationtoacetylcholinesecretoryvesicles).TFsIsl1and Hb9werelocalizedinthenucleus.Finally,theGFPfromtheMnx1::GFPreporterwasactivatedand expressedinthecytoplasm.TotestthefunctionalpropertiesoftheDPMNs,weperformedwhole-cell patchclamprecordings.Depolarizationinducedsingleormultipleactionpotentialsincurrent-clamp experiments(Fig.5D).Depolarizingvoltagestepsinducedfastinwardcurrentsandslowoutward currentscharacteristicofsodiumandpotassiumchannels,respectively(Fig.5E).Exposureto500nM Tetrodotoxin(TTX)blockedtheinwardcurrent,indicatingsodiumchannelinvolvement.Wethentested whetherourDPneuronswouldrespondtoneurotransmittersthatactonMN(Fig.4F).Exposureofthe neuronstoAMPA,kainate,GABA,andglycine(100µMeach)inducedineachcaseinwardcurrents similartothatseeninprimaryembryonicMNs.ToseeiftheDPneuronscouldalsoformneuromuscular junctions,weco-culturedtheneuronswithdifferentiatedC2C12skeletalmusclemyotubesand incubatedthemfor7days.WeobservedclusteringofacetylcholinereceptorsontheC2C12myotubes nearcontactpointswiththeDPneurons,whichcanbeseenwithalpha-bungarotoxin(α-BGT),which bindstoacetylcholinereceptors(Fig.4G).WethenobservedregularcontractionsofsomeC2C12 myotubesthatbeganafterseveraldaysinco-culture(Fig.4G,Supp.Video1).Thesecontractionscould bestoppedbytheadditionof300µMTubocurarine(curare),anantagonistofacetylcholinereceptors, indicatingthatthecontractionswereinducedbytheacetylcholinereleasefromtheMNs.Similarly,we 9 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not is the dauthor/funder. It is made available a CC-BY 4.0 International license. E13.5 HB9+ primarypeer-reviewed) cells Firingunder of short or multiple action potentials a tSNE dimension 2 Motor neurons Collagen rich Immune Glia 20 mV 0.2 s 0.1 s e tSNE dimension 1 b 20 mV 20 mV Unkown subtype 0.1 s Sodium and potassium channel currents Cosine similarity Transcriptional similarity to pMNs 500 pA 0.5 0 200 pA -0.5 SP 10 ms ES C N P EM N LM N N P PN PV P N P M N P EM N LM N DP +TTX 50 ms Expression of MN markers Tubb3 DAPI Map2 DAPI f AMPA VACht DAPI 100 pA 10 s GABA Isl1 DAPI Tubb3 Kainate 400 pA Glycine 100 pA 10 s α-BGT Merge 10 s Hb9 DAPI 100 pA Induction of acetylcholine-dependent myotube contractions in coculture g Response to MN neurotransmitters 10 s No. of contractions per 5 second interval c 5 4 3 + curare (acetylcholine antagonist) 1 0 0 10 19 29 38 5 second interval Fig. 5. Validation that DP and SP trajectories both approach a bona-fide MN state. a) tSNE visualization of 874 single cell transciptomes from FACS purified Mnx1+ MNs from embryos reveals heterogeneity within this population. b) Comparison of cell states along both trajectories with true primary MNs (orange population in a). In both DP and SP similarity increases as differentiation proceeds. Late DP states are the most similar to embryonic MNs. c) Immunostaining of MN markers in DP MNs confirming expression and correct subcellular localization of Tubb3, Map2, VACht, Isl1, and Hb9. DP MNs also: d) can fire single or multiple action potentials upon stimulation, e) show sodium and potassium channel currents, and f) are responsive to multiple MN neurotransmitters - AMPA, kainate, GABA, and glycine. g) Co-culture experiments show that DP MNs can induce clustering of acetylcholine receptors on muscle myotubes (indicated by α-BGT staining) and induce their contractions. The induced contractions are dependent on MN activity as they can be blocked by addition of the acetylcholine antagonist curare. 10 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 2 3 noticedthattheDPMNscouldinducecontractionsinDPmusclemyotubesthatwepreviously generatedwithMyoD(Supp.Video2)4.TheseresultsconfirmthatDPMNshavetheexpectedfunctional propertiesofbona-fideMNs. 4 5 Discussion 6 7 8 9 10 11 12 13 14 15 16 17 18 Theresultswehavedescribedprovideevidenceatthesinglecelllevelthatdifferentiationcanproceed bymultipleroutesyetconvergeontosimilartranscriptionalstates.WeshowthatwhileusingtheSPcells aredriventoretracetheembryoniclineage,DPinducescellstodifferentiatethroughadramatically differentpath.TheDPpathbypassesmultipleintermediateprogenitor-statesthatevolvedinthe embryo,andyetstillconvergestothesamediscreteandrecognizableMNphenotype.Thisconvergence occursfromanabnormalintermediatestate,anddoesnotappeartoinvolveasharedsetofterminal cellstatetransitions;itishighlyorthogonal.Moreover,ascellsconvergetheymanagetonotonly establishgeneexpressionrelatedtoMNfunctions,buttheyalsocorrectpositionalgeneexpression defects(exchangingforebrainforspinalgeneexpression)intheabsenceofexternalsignals.Relativeto ourinitialresearchquestions(Fig.1),weconcludethatDPofmESCsintoMNsoccursviaalatebypass thatinvolvesalternativeintermediatestatesnotseenintheembryo,andthatthisnewrouteconverges nearperfectlytothesamefinalstate.ConvergenceintoaMNthereforedoesnotappeartodepend rigidlyontheprecisehistoryofintermediatestatesthroughwhichcellsdifferentiate. 19 20 21 22 23 24 25 26 27 28 29 30 31 32 This‘historyindependence’ofthefinalstateisconsistentwithadynamicalviewofgene regulationinwhichcellstatescorrespondto‘attractorbasins’,i.e.stablestatesofgeneexpressionthat arerobusttomodestperturbations.Ifattractorbasinsdonotexist,theprecisionoftheobserved overlapbetweenDPandSPMNswouldrequireaspecialcoincidence,likefindinganeedleinahigh dimensionalhaystack.Theconceptofcellstatesbehavingasattractorshasbeenproposedpreviouslyto explainseveralpropertiesofbloodcelltypes26-28.Thereareatleasttwoimportantcorollariesofthis behaviorapplyingindevelopment.Fromapracticalperspective,itisacommonconcernthatDP methodsmaygeneratecelltypeswithsubtledefectsduetotheirunusualdevelopmentalhistories9. Attractorswouldberobusttothisvulnerabilityandindeedourresultsshowthatitisnotnecessaryto recreatetheprecisesequencesofstepstakeninembryostogeneratebona-fideMNs.Itcouldalsohint atamechanismthatmighthelpanimalbodyplansevolveflexibly.Specifically,bydecouplingthe identityofmaturecellstateattractorsfromtheirdevelopmentalhistoriesevolutionwouldbeabletoact oneachindependently.Inprinciplethiscouldcontributetoevolvabilitybyallowingmaturecellstatesto betransposedontonewlineagesinnewbodylocations. 33 34 35 36 37 38 39 40 41 42 ThemechanismsthatdefinetheMNattractorbasinandallowtheartificialDPtrajectoryto convergeontothecorrectfinalstatearelargelyunclear.TheMNstateisthoughttobestabilizedbya networkofself-reinforcingTFs24,involvingMnr2,Mnx1,Lim3,Isl1,Isl2,andLhx3,Ngn2,Myt1l,Nefl,and Nefm.DPaimstokick-startthisnetworkbyactivatingasubsetofimportantcomponents.Yet,farfrom immediatelyactivatingthisnetwork,ourdatashowthatDPinitiallydrivescellstodifferentiateintoan earlyNPstatethroughthesamepathwayastheSPtrajectory,seeminglyoblivioustotheDPTFs,and thenevenactivatesnon-MNgenesinthetransitionalstate.UnderstandingwhytheactivationoftheMN programlagsbehindTFinductionmayprovideimportantcluesintohowtheDPfactorsact.Onepossible sourceforalagisthatactivatingacompleteneuronalprogramrequiresfirstactivatingadditionalcore TFs(so-called‘feed-forward’circuitry).Indeed,recentstudieshaveshownthatEbfandOnecutare 11 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 2 3 4 5 6 7 8 9 10 11 12 activatedbyNgn2(oneoftheDPTFs),andthatbotharerequiredtosubsequentlydirectbindingofIsl1 andLhx3(theothertwoDPTFs)toMNtargetgenesacrossthegenomeduringDP12,29.Asecondpossible sourceoflagisthatextracellularsignalingprovidesinputsthatimmediatelyaffectcellstate,buttake timetosensitizecellstotheDPfactors.Forexample,signalingchangesmightactivateDPTFsthrough post-translationalmodifications,byactivatingco-factors,orbyinducingchromatinstatechanges.We haveindeedobservedthatMNsarenotgeneratedifDPTFsareinducedincellsculturedinpluripotency media,indicatingarequirementforchangesinsignaling(notshown).Conversely,whenmEScellsare transferredtominimalmediawithoutinducingDPfactors,theyacquireaforebrainneuralprogenitor identitybydefault30-32.Thissuggeststhattheearlydynamicsandabnormalforebrain/MNexpressionof theDPtransitionalstatemightinfactbedrivenbythesignalingenvironmentandnottheDPTFs.These alternativessuggestfutureexperimentstobetterresolvethemechanismsdrivingtheDP,byre-mapping thetrajectoryinducedduringDPafterchangingsignalingconditions,orthechoiceofDPTFs. 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Asamethodology,DPissignificantlymoreefficientthantheSPwithoutlossofqualityintheMN populationsproduced(Fig.2F-G;Fig.5).Thehigh-efficiencyofDPlikelyderivesfrombothitsmore uniformexperimentalconditionsaswellasitsmoredirectdifferentiationpath.Experimentally,DP: relieson2Dratherthan3Dtissueculture(asintheSP),minimizinguncontrolledcell-cellcommunication; forceseveryindividualcelltoexpressMNTFsfromageneticallyintegratedconstruct,increasing uniformity;andemploysadefined-mediawithoutgrowthfactorsthatmayminimizeproliferationof progenitorstates.ThemoredirectdifferentiationpathinducedbyDPshouldalsoitselfincreaseMN conversionefficiencybyminimizingerrorpropagationthroughchainedopportunitiesforoff-targetfate choices.Duringsequencesofintermediatecellstatetransitions,eachtransitioncanhavecompetingofftargetfates.Thus,differentiationprocessesthatinvolvemanysequentialintermediatetransitionssuffer frommultiplicativeefficiencylosses.Indeed,thelongersequenceofintermediatestatestheinSP generatesafarlargerfractionofoff-targetpopulationsthatincreaseswithtime,suggestinga progressivelossofefficiency.Targetingterminalattractorbasinsthroughtheshortestpossible differentiationpathsmayprovetobeagenerallyeffectivestrategytogeneratedesiredcellstates. 27 28 Acknowledgements 29 30 WearegratefultoEstebanMazzoniforprovidingthetranscriptionfactorcassettecontainingEScellline usedintheDPexperimentspresentedhere. 31 32 Competinginterests 33 V.L.andM.K.arecofoundersofStemCellerant,LLC.A.K.andM.K.arecofoundersof1CellBio,Inc. 34 35 Authorcontributions 36 37 38 Allauthorshelpeddesignthestudyanditsexperimentalquestions.V.L.establishedtheMN differentiationprotocolsandperformedtheirmolecularcharacterization.J.B.performedthesingle-cell datacollectionandanalysis.S.L.didtheelectrophysiologyrecordings.M.K.,A.K.andC.W.assistedwith 12 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 2 analysisandinterpretationofexperimentalresults.Allauthorscontributedtothewritingofthe manuscriptandpreparationoffigures. 13 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 References 2 3 1 Takebayashi,H.etal.Thebasichelix-loop-helixfactorolig2isessentialforthedevelopmentof motoneuronandoligodendrocytelineages.Currentbiology:CB12,1157-1163(2002). 4 2 Kretzschmar,K.&Watt,F.M.Lineagetracing.Cell148,33-45,doi:10.1016/j.cell.2012.01.002(2012). 5 6 3 Mazzoni,E.O.etal.Synergisticbindingoftranscriptionfactorstocell-specificenhancersprograms motorneuronidentity.NatNeurosci16,1219-1227,doi:10.1038/nn.3467(2013). 7 8 9 4 Li,V.C.&Kirschner,M.W.Moleculartiesbetweenthecellcycleanddifferentiationinembryonic stemcells.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica111, 9503-9508,doi:10.1073/pnas.1408638111(2014). 10 11 5 Son,E.Y.etal.Conversionofmouseandhumanfibroblastsintofunctionalspinalmotorneurons. Cellstemcell9,205-218,doi:10.1016/j.stem.2011.07.014(2011). 12 13 6 Vierbuchen,T.etal.Directconversionoffibroblaststofunctionalneuronsbydefinedfactors. Nature463,1035-1041,doi:10.1038/nature08797(2010). 14 15 7 Ieda,M.etal.Directreprogrammingoffibroblastsintofunctionalcardiomyocytesbydefinedfactors. Cell142,375-386,doi:10.1016/j.cell.2010.07.002(2010). 16 17 8 Szabo,E.etal.Directconversionofhumanfibroblaststomultilineagebloodprogenitors.Nature468, 521-526,doi:10.1038/nature09591(2010). 18 19 9 Cohen,D.E.&Melton,D.Turningstrawintogold:directingcellfateforregenerativemedicine. Naturereviews.Genetics12,243-252,doi:10.1038/nrg2938(2011). 20 21 10 Zhou,Q.&Melton,D.A.Extrememakeover:convertingonecellintoanother.Cellstemcell3,382388,doi:10.1016/j.stem.2008.09.015(2008). 22 23 11 Treutlein,B.etal.Dissectingdirectreprogrammingfromfibroblasttoneuronusingsingle-cellRNAseq.Nature534,391-395,doi:10.1038/nature18323(2016). 24 25 12 Velasco,S.etal.AMulti-stepTranscriptionalandChromatinStateCascadeUnderliesMotorNeuron ProgrammingfromEmbryonicStemCells.Cellstemcell,doi:10.1016/j.stem.2016.11.006(2016). 26 27 13 Wichterle,H.,Lieberam,I.,Porter,J.A.&Jessell,T.M.Directeddifferentiationofembryonicstem cellsintomotorneurons.Cell110,385-397(2002). 28 29 14 Wu,C.Y.,Whye,D.,Mason,R.W.&Wang,W.Efficientdifferentiationofmouseembryonicstem cellsintomotorneurons.Journalofvisualizedexperiments:JoVE,e3813,doi:10.3791/3813(2012). 30 31 15 Klein,A.M.etal.Dropletbarcodingforsingle-celltranscriptomicsappliedtoembryonicstemcells. Cell161,1187-1201,doi:10.1016/j.cell.2015.04.044(2015). 32 33 16 Treutlein,B.etal.Reconstructinglineagehierarchiesofthedistallungepitheliumusingsingle-cell RNA-seq.Nature509,371-375,doi:10.1038/nature13173(2014). 34 35 17 Scialdone,A.etal.Resolvingearlymesodermdiversificationthroughsingle-cellexpressionprofiling. Nature535,289-293,doi:10.1038/nature18633(2016). 36 37 18 Trapnell,C.etal.Thedynamicsandregulatorsofcellfatedecisionsarerevealedbypseudotemporal orderingofsinglecells.Naturebiotechnology32,381-386,doi:10.1038/nbt.2859(2014). 38 39 19 Setty,M.etal.Wishboneidentifiesbifurcatingdevelopmentaltrajectoriesfromsingle-celldata. Naturebiotechnology34,637-645,doi:10.1038/nbt.3569(2016). 14 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 2 20 Bendall,S.C.etal.Single-celltrajectorydetectionuncoversprogressionandregulatorycoordination inhumanBcelldevelopment.Cell157,714-725,doi:10.1016/j.cell.2014.04.005(2014). 3 4 5 21 Amirel,A.D.etal.viSNEenablesvisualizationofhighdimensionalsingle-celldataandreveals phenotypicheterogeneityofleukemia.Naturebiotechnology31,545-552,doi:10.1038/nbt.2594 (2013). 6 22 vanderMaaten,L.&Hinton,G.VisualizingDatausingt-SNE.JMachLearnRes9,2579-2605(2008). 7 8 23 Davis-Dusenbery,B.N.,Williams,L.A.,Klim,J.R.&Eggan,K.Howtomakespinalmotorneurons. Development141,491-501,doi:10.1242/dev.097410(2014). 9 10 24 Jessell,T.M.Neuronalspecificationinthespinalcord:inductivesignalsandtranscriptionalcodes. Naturereviews.Genetics1,20-29,doi:10.1038/35049541(2000). 11 12 25 Weinreb,C.W.,S;Klein,A.SPRING:akineticinterfaceforvisualizinghighdimensionalsingle-cell expressiondata.bioRxiv,doi:https://doi.org/10.1101/090332(2016). 13 14 15 26 Chang,H.H.,Hemberg,M.,Barahona,M.,Ingber,D.E.&Huang,S.Transcriptome-widenoise controlslineagechoiceinmammalianprogenitorcells.Nature453,544-547, doi:10.1038/nature06965(2008). 16 17 27 Huang,S.,Guo,Y.P.,May,G.&Enver,T.Bifurcationdynamicsinlineage-commitmentinbipotent progenitorcells.Developmentalbiology305,695-713,doi:10.1016/j.ydbio.2007.02.036(2007). 18 19 28 Huang,S.,Eichler,G.,Bar-Yam,Y.&Ingber,D.E.Cellfatesashigh-dimensionalattractorstatesofa complexgeneregulatorynetwork.PhysRevLett94,128701(2005). 20 21 22 29 Rhee,H.S.etal.ExpressionofTerminalEffectorGenesinMammalianNeuronsIsMaintainedbya DynamicRelayofTransientEnhancers.Neuron92,1252-1265,doi:10.1016/j.neuron.2016.11.037 (2016). 23 24 30 Pankratz,M.T.etal.Directedneuraldifferentiationofhumanembryonicstemcellsviaanobligated primitiveanteriorstage.Stemcells25,1511-1520,doi:10.1634/stemcells.2006-0707(2007). 25 26 27 31 Smukler,S.R.,Runciman,S.B.,Xu,S.&vanderKooy,D.Embryonicstemcellsassumeaprimitive neuralstemcellfateintheabsenceofextrinsicinfluences.TheJournalofcellbiology172,79-90, doi:10.1083/jcb.200508085(2006). 28 29 30 32 Okada,Y.,Shimazaki,T.,Sobue,G.&Okano,H.Retinoic-acid-concentration-dependentacquisition ofneuralcellidentityduringinvitrodifferentiationofmouseembryonicstemcells.Developmental biology275,124-142,doi:10.1016/j.ydbio.2004.07.038(2004). 31 15 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 16 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 17 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 18 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 19 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 20 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 21 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 22 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 SupplementaryMethods 2 ESCculture 3 4 5 ThemouseEScelllinecontainingdoxycycline-inducibleNgn2+Isl1+Lhx3(NIL)andtheHb9::GFPreporter wasgraciouslyprovidedbyEstebanMazzoni.ESCswereculturedinstandardmedia(DMEMwithLIF+ 15%fetalbovineserum)on0.2%gelatin-coateddishes. 6 7 Differentiationintomotorneurons:directandstandardprogramming 8 9 10 11 12 13 14 Twenty-fourhoursbeforestartingdifferentiation,ESCsweretrypsinizedandseededontoplatesprecoatedwithamixofpoly-d-lysine(100μg/ml)andlaminin(50μg/ml)insteadofgelatinforadherence. ESCswerecountedbyaBeckmanCoulterCounterandseededatadensityofapproximately200,000 cellsperwellofa6-welldish.Atday0(ESCs),themediawasswitchedfromstandardESmediatoN2B27 media(Invitrogen).Doxycyclinewasalsoaddedat3μg/mlstartingtoinduceexpressionoftheNIL transcriptionfactors.Mediawaschangeddaily.Forthestandardprogrammingprotocol,thesteps describedinWuetal.werefollowedstrictly. 15 16 Mouseembryonicmotorneuroncultures 17 18 19 20 21 22 23 24 25 TheB6.Cg-Tg(Hlxb9-GFP)1Tmj/Jmice(JAX#005029)werebredwithC57BL/6J(JAX#000664)for embryonicmotorneuronsdissection.AllanimalprotocolswereapprovedtheInstitutionalAnimalCare andUseCommitteeatBostonChildren’sHospital.Ongestationalday13(E13),thefemalemicewere anesthetizedandallembryoswerecollectedbycaesariansection.OnlyGFPembryoswereusedfor furtherdissection.Thespinalcordswereisolatedandtheirmeningeswereremoved.Eachisolated spinalcordwasdissociatedbytrypsinandmechanicaltrituration.Afterfilteringthecellswith100μm strainers,thecellswerespundownandre-suspendedinPBS,andsubjectedtoflowcytometry.Cells wererunthrougha100μmnozzleatlowpressure(20p.s.i.)onaBDFACSariaIImachine(Becton Dickinson,USA).Aneuraldensityfilter(2.0setting)wasusedtoallowvisualizationoflargecells. 26 27 SinglecelltranscriptomicsusingInDrops 28 29 30 31 32 33 34 35 36 37 38 WedissociateddifferentiatingmESCculturesusinga0.25%Trypsin2mMEDTAsolution(Gibco).Primary HB9+sortedmotorneuronsweredissociatedasabove.Dissociatedcellsuspensionswereverifiedtobe monodisperseandofviability>95%usingacoultercounterwithtrypanbluestaining(BioRad).Wethen performeddroplet-basedbarcodingreversetranscription(RT)reactionsandpreparedmassively multiplexedsequencinglibrariesusingInDropsasdescribedinKleinetal.Briefly:cells,lysisandRT reagents,andbarcodingprimersattachedtohydrogelbeadsarecombinedinnanolitersizeddroplets suspendedinanoilemulsionusingtheInDropsmicrofluidicdevice.AbarcodingRTreactionisthen carriedoutinthedropletemulsion,uniquelylabelingtheRNAcontentsofeverycellusingacellbarcode anduniquemolecularidentifier(UMI).FollowingRT,barcodedemulsionsaresplitintobatches,andthe emulsionisbroken.CombinedmaterialisamplifiedintoananomolarIlluminasequencinglibrary throughaseriesofbulkreactions:secondstrandsynthesis,invitrotranscription(IVT),fragmentation, 23 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 2 3 4 5 6 7 8 9 RT2,andafinallowcyclenumberPCR.ThemajorityoftheamplificationtakesplaceduringIVTensuring uniformlibrarycoverage.SinglecelllibrarieswerethensequencedoneithertheIlluminaHiSeqor NextSeqplatforms.Readsweredemultiplexedusinganupdatedversionofthecustombioinformatics pipelinedescribedinKleinetal..Apythonimplementationofthispipelineisnowpublicallyavailableon GitHub.Briefly,itfiltersforreadswiththeexpectedbarcodestructure,splitsreadsaccordingtotheir cellbarcode,alignsthemtoareferencetranscriptome(weusedGRCm38withsomeadded mitochondrialgenometranscripts),andthencountsthenumberofdifferentUMIsappearingforeach geneineachcell.Thefinaloutputisacountsmatrixofcellsvs.genesthatweloadedintoMATLABfor furtheranalysis. 10 11 12 Single-celldatacleanup:minimumexpressionthreshold,totalcountnormalization,stressedcell removal 13 14 15 16 17 18 19 20 Beforeperformingtheanalysesdescribedbelow,threestepsweretakentoensurethatthedatawasof highquality.First,werequiredallcellstohaveatleast1000UMIsdetected.Thisremovedanysignal potentiallycomingfromemptydroplets.Second,dataweretotalcountnormalizedtoensure differencesbetweencellswerenotduetotechnicalvariationinmRNAcaptureefficiencyorcellsize. Finally,cellsthathadahighstressgenesignaturewereexcludedfromanalysis.Stressedcellswere initiallyrecognizedasasmallpercentageofcells(<10%)thatclusteredapartfromeverythingelseand specificallyexpressedveryhighlevelsofamitochondrialgenesetthatisassociatedwithcellularstress. Masksthatconvertrawcountsintoourfilteredsetareprovidedonline. 21 22 Visualizationofsingle-celldatausingtSNE 23 24 25 Tovisualizehigh-dimensionalsinglecelldata,dimensionalityreductionisessential.Wechoseto implementtSNEasdescribedinKleinetal.Thecorestepsaresummarizedasfollows.Steps1-2preceed tSNE,andfocusthealgorithmongenesthatbestdescribedifferencesbetweencellpopulations. 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 1. Extractthetop1000highlyvariablegenes.Wedothisusingastatisticaltestderivedspecifically forInDropsdata(Kleinetal.). 2. Extractprincipalvariablegenes.Principalvariablegenesareasubsetofthehighlyvariablegenes fromstep2thatwefindbestdescribesthecellpopulationstructure.Thestepstofindprincipal variablegenesare: a. PerformPCAusingthetop1000biologicallyvariablegenes. b. Identifythenumberofnon-trivialprincipalcomponents.Thisisdonebycomparingthe eigenvalueofeachprincipalcomponentfroma.totheeigenvaluedistributionforthe samedataafterbeingrandomized.Onlyprincipalcomponentswitheigenvalueshigher thanthoseobservedonrandomdataareretained. c. Extractgenesthatcontributemosthighlytotheseprincipalcomponentsbyimposinga thresholdonthegeneloadingsforeachnon-trivialPC. 3. PerformtSNE.WeusedtheMATLABimplementationoftSNEfromVandeMarteenetal.As input,wesuppliedz-scorenormalizedprincipalvariablegenes,andaskedtSNEtoperforman initialPCAtoanumberofdimensionsequaltothenumberofnon-trivialprincipalcomponents instep4.tSNEthentakescellsembeddedinthisPCAspaceandnonlinearlyprojectsthemonto twodimensionsforvisualization. 24 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 2 Subpopulationanalysis 3 4 5 6 7 Thefirstgoalofoursinglecellanalysiswastodescribetheidentityandproportionsofcellstates generatedbyeachoftwomotorneurondifferentiationstrategies.Forthispurposewefoundthatgood resultswereachievedusinglocal-densitygradientclusteringonthe2DtSNErepresentationofthedata. Thisapproachprovidedaclearandnaturalcellstateclassificationthatwaswellalignedwithprior knowledgeaboutmarkergeneexpressiondomains.Thestepswetookaresummarizedasfollows: 8 9 10 11 12 1. PerformtSNE(asabove)oncellspooledfromalltimepointsforeachprotocol(e.g.Fig.2B). 2. Applylocaldensitygradientclusteringtodefinecellstates. 3. Identifygenesspecificallyexpressedbyeachcellstate,andusepriorknowledgeontheir expressiondomainstogenerateacelltypeannotation(e.g.Fig.2D). 4. Quantifythefractionofcellsineachstateateachtimepoint(e.g.Fig.2F). 13 14 15 16 17 18 Weidentifiedgenesthatwerespecificallyexpressedbyeachsubpopulationthroughpairwiset-testsand visuallyinspectedtheirexpressionoverthetSNEembedding.InFigure2D-Eofthemaintext,weshow thez-scorenormalizedexpressionofaselectionofmarkergenesthatweusedasaheatmap.Z-score normalizationpreservesdifferencesbetweenpopulationswhileputtingtheexpressionlevelofevery geneonthesamescale.InSupplementaryFigs.S1andS2,weshowtheun-normalizedexpressionof eachofthesegenesindividuallysothatthereadermaycompare. 19 20 Initialidentificationofdifferentiationtrajectories 21 22 23 24 25 26 27 28 29 30 Duringoursubpopulationanalysisweobserved,forbothprotocols,acontinuousprogressionofcells thatspannedtheinitialEScellstatethroughtheearlyandlatedifferentiationtimepoints.This progressionwaspunctuatedbyfamiliarprogenitorstatesthatwereorderedinawaythatwas consistentwithknowneventsinmotorneurondifferentiation(Figure2D-E),andwascorrelatedwith chronology(Figure2B-Cinset).Weinterpretedtheseprogressionsasdifferentiationtrajectories.Eachis reconstructedfromthreepopulationsnapshots(day0,day4/5,andday11/12).Becausedifferentiation invitroisasynchronous,thesinglecelldataoverlappedfromonetimepointtothenext.Wededuce fromthisthatintermediatestateswerenotmissedduetothespacingofourtimepoints.Wealso validatedthatimportantintermediategeneswerenotdetectedoveradenselysampledtimecourse usingqPCR(seebelow). 31 32 Differentialgeneexpressionanalysisbetweencellstatesfromsingle-celldata 33 34 35 36 37 38 39 Weidentifieddifferentiallyexpressedgenesbetweencellstatesbyusingtwo-tailedt-testswitha multiplehypothesistestingcorrection.Wedefineddifferentiallyexpressedgenesconservativelyata FDRof5%andasignificancelevelofp<0.0001.Weonlyconsideredgeneswhereatleastoneofthe statesbeingcomparedhad>=10cellswithnon-zeroexpression.Tofindmarkergenesofapopulation weaskedforgenesthatwereenrichedinthatpopulationversuseverythingelse.Forseveral comparisonswerestrictedouranalysistoRikentranscriptionfactors.Thislistcontains~1,500genes withmanuallyannotatedtranscriptionfactoractivity.Werepresenteddifferentialexpressiondatausing 25 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 2 volcanoplots,andcoloredtheexpressionintensityofeachgeneusingacolorbar;themeanofthe higherexpressingstatewasused. 3 4 5 ComparisonofdifferentiationpathsI:Visualizationofalternatedifferentiationtrajectoriesusing SPRING 6 7 8 9 10 11 Afterourinitialidentificationofthedifferentiationpathsforthestandardprotocolandfordirect programmingwewishedcomparetheirroutes.Oneofthemostpowerfulwaystobeginaddressingsuch aproblemistosimplyvisualizethedata.Yet,wefoundtSNEgaveunclearresultsforadirectcomparison ofthepaths;visualizingbothprotocolstogetherresultedinsomemixedclusters,andsomedistinct clusters,butnooverallcoherencetotherepresentationaswehadfoundlookingatoneortheother trajectoryseparately.ThelimitationsoftSNEforanalyzingcontinuousprocessesarewellknown. 12 13 14 15 16 17 18 19 20 21 22 23 Wethereforeturnedtoanewmethoddevelopedinparalleltothisworkinourlabcalled SPRING,thatinourexperiencedoesbetterinanalyzingcontinuousprocessesinsinglecelldata.SPRING hasthreecoresteps:first,itreducesdimensionalitytoa50dimPCAspace;second,itconstructsaknearest-neighbor(kNN)graphinthisspace;finally,itrendersaninteractive2DvisualizationofthiskNN graphusingaforcedirectedlayout.InthisvisualizationedgesofthekNNgraphareliterallyspringsthat pulltogethersimilarcells,whileeverycellhasamagneticrepulsionforcethatpushesitawayfromother cellsandanintrinsicgravity.Thebalanceoftheseforcesilluminatesthetopologyofhowcellsare positionedinhigh-dimensionwithrespecttooneanother.Inthisvisualizationnodescanbemoved aroundtorotatetheprojectionandfindtheclearestrepresentation;ineachnewpositionthegraphrerelaxesaccordingtotheunderlyingphysicsoftheforcedirectedlayout.Thespecificstepswetookto generateFig.3Aareasfollows.NotethatasmallmanualcorrectionwasmadetothepositionoftheESC andLMNpopulationstoreducewhitespace,butdidnotdistortrelationshipsbetweenpopulations. 24 25 26 27 28 29 30 31 32 33 1. LoadthecellsalongeachdifferentiationpathintoSPRINGseparately. 2. Removedoublets.Doubletswereidentifiedbythreecriteria.1)theyarerare,inlinewithour experimentalexpectationforcelldoublets,2)theyformedlongrangeconnectionsbetween largecellgroupsinthesametimepointandsample,3)theydonotpossessanyuniquemarker genes;allgenestheyexpressarealinearcombinationoftwoothercellstates.Weidentified approximately80doubletsinthestandardprotocol(<3%ofallcells),andapproximately40in thedirectprogrammingapproach(<2%ofallcells). 3. LoadthefilteredcellsfrombothprotocolsintoSPRINGtogether.Tomakeplotsthecoordinates fromtheSPRINGrepresentationwereexportedintoMATLAB;cellswereeithercoloredbycell state(Fig.3A),orgeneexpression(Fig.3B). 34 35 ComparisonofdifferentiationpathsII:Pairwisecosinesimilarityofcellstatecentroids 36 37 38 39 40 41 Wealsoaskedhowthedirectprogrammingandstandardmotorneurondifferentiationpathswere relatedtoeachotherbyperformingapairwisecomparisonofcellstatecentroids.Centroidsarethe averageorcenterofmassingeneexpressionspaceforacollectionofcells.Centroidscanprovideavery accurateestimateofglobalgeneexpressionthataveragesoverthenoiseintrinsictosingle-cellRNA sequencingatthelevelofindividualcells.Bycomputingthecosinesimilaritybetweentwocellstate centroidsweareaskinghowsimilarthesestatesareinaveragegeneexpression.Ifthepathsdoindeed 26 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 2 3 4 5 splitandthenreconvergeourexpectationwastoseesimilaritybetweenearlyandlatestatesinboth progressions,butnotbetweentheintermediatestates.WechosetoperformthesecomparisonsinaPVgenespaceconstructedfromcellsinbothprotocolstomakeourcomparisonsassensitiveaspossible. Weobtainedsimilarbutlesssensitiveresultsusingallgenesaboveaminimumexpressionvalue(not shown).Asummaryofthestepsofthisanalysisis: 6 7 8 9 10 11 1. Combineallcellsfrombothprotocols,extractPV-genes(asdescribedabove),andz-score normalizetheirexpression. 2. CalculatethecentroidofeveryclusterfromeachtrajectoryinthisPV-genespace. 3. Computethepairwisecosinesimilarityforalldirectprogrammingclustersversusallstandard protocolclusters. 4. Visualize:wechosetouseaheatmap(Fig.3C). 12 13 14 ComparisonofdifferentiationpathsIII:Maximumlikelihoodassignmentofsinglecellstocellstate centroidsbetweentrajectories 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Finally,weperformedanindependentcomparisonofthedifferentiationpathsthatdidnotdependon ourdefinitionofclusterboundariesinthedirectprogrammingtrajectory.Weaskedwhetherany potentiallyrareindividualcellsorsubpopulationsinthedirectprogrammingtrajectoryresemblethe intermediatestatesofthestandardtrajectory.Becausewewerenowdealingwithsinglecells,not averagesofmanymeasurements,carewasnecessaryinthisanalysistoremainrobustrelativetothe noiseinsinglecellmeasurements.WethereforetookaBayesianapproachandreasonedasfollows.In ourdata,eachcellisavectorofcounts,withoneelementforeverygene.Thesecountscanbeviewed asamultinomialsamplefromsomeunderlyingdistributionofgeneexpression.Sinceeachstateofthe standarddifferentiationtrajectoryisdefinedbyaparticulargeneexpressiondistribution,wecanask: whatistheprobabilityagivendirectprogrammingprotocolcellwassampledfromeachstandard differentiationtrajectorycluster?Inthisusage,probabilityamountstoameasureofsimilarity,withhigh probabilityindicatinghighsimilarity.WeobtainedsimilarresultsworkingineitheraPV-geneexpression space,orconsideringallgenesexpressedaboveaminimumcountsthreshold.Theresultsofthisanalysis usingPV-genesarepresentedinFigure3D.Wealsoobtainedsimilar(butmorenoisy)resultsusing cosinesimilarityasanalternativedistancemetric(notshown).Thespecificstepsofourcomputationare asfollows: 31 32 33 34 35 36 37 38 39 40 41 42 1. Extractasetofgeneswithwhichtomakecomparisons(eitherPV-genesorallgenesabovea minimumexpressionthreshold). 2. Foreachclusterofthestandardtrajectory,calculatetheprobabilityofobservingagivengene (i.e.thefractionofcountsinthatclusterfromthegene).Forgenesthatarenotdetectedadd 1e-07totalcounts. 3. Foreachcellinthedirectprogrammingtrajectory,calculatethelog-likelihoodthatitwasdrawn fromeachoftheseclusters.Thislog-likelihoodisfromthemultinomialdistributionfunction usingtheprobabilitiesobtainedinstep2. 4. Identifyandtallythemaximumlikelihoodassignmentsofalldirectprogrammingcells. Normalizerawassignmentssothattheysumto100(givingthepercentage).Plotthepercentage ofdirectprogrammingcellsassignedtoeachstandardprotocolstate. 27 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 Cellcyclegeneexpressionanalysis 2 3 4 5 6 7 8 9 10 11 12 13 Cell-cycleactivitycanbeestimatedfromacellcycleassociatedgeneexpressionsignature;populations thatexpresshigheraveragelevelsofcellcyclegenesaremostlikelycyclingathigherfrequencythana populationwithlowerlevelexpressionofthesegenes.InFig.4bandFig.S4weperformedananalysisin thisspirittodeterminewhichpartsoftheDPandSPdifferentiationtrajectoriesappearedtobe proliferative,andtoestimatewherecellsareexitingthecellcycle.Wecomputedaproliferationscore thatwastheaggregateexpressionofapanelof21cellcyclerelatedgenes:Aurka,Top2a,Ccna2,Ccnd1, Ccnd2,Ccnd3,Ccne1,Ccne2,Ccnb1,Cdk4,Cdk6,Cdk2,Cdk1,Cdkn2b,Cdkn2a,Cdkn2c,Cdkn2d,Cdkn1a, Cdkn1b,Cdkn1c,Mcm6,Cdc20,Plk1,andPcna.Wealsocomputedacellcycleexitscoreonthebasisof theaggregateexpressionofapanelof4tumorsuppressorgenesthatinhibitthecellcycle:Cdkn1c, Cdkn1b,Cdkn1a,andCdkn2d.InFig.S4weshowtheexpressionofrepresentativeindividualgenesfrom thisscore;ingeneralcellcyclegeneswerecorrelatedwitheachotherintheirexpressionovercells,as werecellcycleexitgenes. 14 15 Comparisonofmotorneuronsinvitrowithprimarymotorneuronsusingsingle-celldata 16 17 18 19 20 21 Howdoesthetranscriptionalstateofmotorneuronsproducedbybothprotocolscomparetothatof motorneuronsinvivo?Toanswerthisquestionweleveragedtheabilityofsingle-cellRNAsequencingto comparecellstatesevenwithinpopulationsthatarenotpure(alsoseebelowforfunctional comparisonsofthephenotypes).Weperformedthreeanalyses.First,wecomputedthecosinesimilarity betweenthecentroidsofeachcellstateinbothprotocolsandprimarymotorneurons(Fig.5B).The specificstepsofthisanalysiswereasfollows: 22 23 24 25 26 27 1. Combineallcellstatesfrombothprotocols,andfromHB9+E13.5primarytissue,extractPVgenes(asdescribedabove),andz-scorenormalizetheirexpression. 2. Calculatethecentroidofeveryclusterfromeachtrajectory,andfromprimarymotorneurons,in thisPV-genespace. 3. Computethecosinesimilarityforallinvitropopulationsversusprimarymotorneurons,and visualizeasabargraph. 28 29 30 31 32 33 34 35 36 37 38 39 40 41 Second,weperformedaco-clusteringanalysis(Supp.Fig.6).Ifcellsclustertogetherthisisanindication ofsimilarity.Anadvantageofco-clusteringisthatitallowsonetomakestatementsatasinglecelllevel aboutthefractionofcellswithinastatethatresembleanotherstate,forexample.Thespecificstepsof ourcoclusteringanalysiswere: 1. Forstandardprotocol,directprogramming,andprimaryHB9+cells,filterforneurons:inthis analysiswedefinedneuronsascellswith>2.5UMIsfromuniversalneuronalmarkerTubb3. 2. PerformtSNEandlocaldensitygradientclustering(asabove;Supp.Fig.6A). 3. Foreverycondition,countthefractionofcellsbelongingtoeachcluster.Similarstatesshould belongtothesamecluster. 4. Visualize:wechosetouseapiechart. Third,weperformeddifferentialgeneexpressionanalysis,comparingthemostmaturemotorneuron statesfromeachprotocolwithprimaryHB9+motorneurons(Supp.Fig.7).Thisanalysiswasperformed asdescribedabove.Wealsoperformeddifferentialexpressionanalysisofthesepopulationsusingbulk microarraysasvalidation(seebelow). 28 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 2 qPCR 3 4 5 RNAwasisolatedusingQiagenRneasyPlusKit.PurifiedRNAwasthenreversetranscribedusingBiorad'siSCRIPTcDNAsynthesiskit.QuantitativePCRwasperformedusingBio-rad'sSYBRgreenSupermix onaCFX96Real-TimePCRsystem. 6 7 Immunostaining 8 9 10 11 12 13 Antibodiesusedforimmunostainingwereanti-Tubb3(CellSignalingD71G9;1:100),anti-Map2(Sigma M9942;1:200),anti-VACht(SynapticSystems139103;1:200),anti-Isl1(Abcamab109517;1:1000),and anti-Hb9(DSHB81.5C10;1:100).Differentiatedcellswerefixedin4%paraformaldehydefor20minutes andthenpermeabilizedwith0.1%Triton-Xfor15minutes.Afterprimaryincubationfor1hour,samples werelabeledwithasecondaryantibodyconjugatedtoAlexaFluor647.Sampleswereco-stainedwith DAPIbeforeimagingonaNikonEclipseTE2000-Emicroscope. 14 15 Electrophysiology 16 17 18 19 20 21 22 23 24 Allrecordingswerecarriedoutatroomtemperaturewithin6daysofplatingtheneuronsin35mmdish. Whole-cellvoltageclamprecordingsweremadewithaMulticlamp700Bamplifier(MolecularDevices) andpatchpipetteswithresistancesof2˗3MΩ.Pipettesolutionwas135mMK-Gluconate,10mMKCl,1 mMMgCl2,5mMEGTA,10mMHEPES,pH7.2,adjustedwithNaOH.Theexternalsolutionwas140mM NaCl,5mMKCl,2mMCaCl2,2mMMgCl2,10mMHEPES,and10mMD-glucose,pH7.4,adjustedwith NaOH.WeusedgravityperfusionsystemconnectedwithPerfusionPencil®withMulti-BarrelManifold Tip(AutoMateScientific)toexternallyapply0.5µMtetrodotoxin,100µMAMPA,kainate,GABA,or glycinetothecells.CommandprotocolsweregeneratedanddatawasdigitizedwithaDigidata1440A A/DinterfacewithpCLAMP10software. 25 26 Co-culturemusclecontractionassays 27 28 29 30 31 32 33 34 35 C2C12myoblastsweregrownin10%FBS+DMEMmediaandthendifferentiatedintomyotubesby incubatingindifferentiationmedium(2%horseserum+DMEM).Aftermyotubeswereformed,the neuronsweredissociatedbytrypsinizationandreseededontopofthedifferentiatedmuscletoallow contractionstodevelop.VideoofcontractionsweretakenusingMetamorphsoftwareandmanually countedover5secondintervals.Forstoppingassay,300µMTubocurarine(Sigma)wasaddedtothe mediaasanacetylcholinecompetitor.Forlabelingofacetylcholinereceptors,bungarotoxin(Invitrogen) wasusedaftercellswerefixedwithparaformaldehyde.SimilarlytoC2C12cells,EScellsover-expressing MyoDwerealsodifferentiatedtomyotubesusingdifferentiationmediumandsubjectedtoco-culture withneurons. 36 37 MicroarrayAnalysis 29 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 2 3 4 5 6 7 ThemRNAofundifferentiatediNILEScellsandNIH3T3cells(growinDMEM+10%FBS)werecollected andpurifiedbyRNAextractionusingRNeasyPlusExtractionKit(Qiagen).Neuronsdifferentiatedby eitherprotocolwerefirstsortedbyflowcytometryonaBDFACSariaIImachine(BecktonDickinson, USA)tocollectHb9::GFP+cells,andthenweresubjectedtoRNAextractioninasimilarfashion. CollectedRNAwasthenamplifiedandhybridizedtoAffymetrixGeneChipMouseTranscriptomeArrays (MTA1.0).ResultswereprocessedbytheChildren’sHospitalMicroarrayCoreFacility,andwere analyzedusingAffrymetrix’sTranscriptomeAnalysisConsoleandExpressionConsolesoftware. 30 bioRxiv preprint first posted online Apr. 5, 2017; doi: http://dx.doi.org/10.1101/124594. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY 4.0 International license. 1 Methodsreferences 2 3 Li,V.C.,andKirschner,M.W.Moleculartiesbetweenthecellcycleanddifferentiationinembryonicstem cells.P.N.A.S.111,9503-8(2014). 4 5 Wu,C.Y.,Whye,D.,Mason,R.W.,Wang,W.EfficientDifferentiationofMouseEmbryonicStemCellsinto MotorNeurons.J.Vis.Exp.64,e3813,DOI:10.3791/3813(2012). 6 7 Treutlein,B.,etal.Dissectingdirectreprogrammingfromfibroblasttoneuronusingsingle-cellRNA-seq. Nature.534,391-5(2016). 8 9 Wichterle,H.,Lieberam,I.,Porter,J.A.,andJessell,T.M.Directeddifferentiationofembryonicstemcells intomotorneurons.Cell.110,385-397(2002). 10 11 Boulting,G.L.,etal.Afunctionallycharacterizedtestsetofhumaninducedpluripotentstemcells. NatureBiotechnology.29,279-286(2011). 12 13 Karunbayaram,S.,etal.Directeddifferentiationofhumaninducedpluripotentstemcellsgenerates activemotorneurons.StemCells.27,806-811(2009). 14 15 Davis-Dusenbery,B.N.,Williams,L.A.,Klim,J.R.,andEggan,K.Howtomakespinalmotorneurons. Development.141,491-501(2014). 16 17 Lee,H.etal.Directeddifferentiationandtransplantationofhumanembryonicstemcell-derived motoneurons.StemCells.25,1931-9(2007). 18 19 20 Soundararajan,P.,Miles,G.B.,Rubin,L.L.,Brownstone,R.M.,andRafuse,V.F.Motoneuronsderived fromembryonicstemcellsexpresstranscriptionfactorsanddevelopphenotypescharacteristicof medialmotorcolumnneurons.J.Neurosci.26,3256-3268(2006). 21 22 Mazzoni,E.O.,etal.Synergisticbindingoftranscriptionfactorstocell-specificenhancersprograms motorneuronidentity.Nat.Neurosci.16,1219-27(2013). 23 31