Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Calculus II Math 116 Homework 3 Due Friday Feb. 14 (1) Let f (x) = x3 , and compute the Riemann sum of f over the interval [1, 2], using 5 subintervals of equal length and choosing the representative points to be the left endpoints of the subintervals. Solution. ∆x = 2−1 = 15 = .2. Then our 5 subintervals are [1, 1.2], [1.2, 1.4], [1.4, 1.6], 5 [1.6, 1.8], and [1.8, 2]. So the Riemann sum is (.2)[f (1)+f (1.2)+f (1.4)+f (1.6)+f (1.8)] = (.2)[(1)3 +(1.2)3 +(1.4)3 +(1.6)3 +(1.8)3 ] = 3.08. 4 (2) Compute each of the following: R8 √ 3 (a) 1 2 xdx Solution. Z Z 8 √ 3 2 xdx = 8 1 2x 3 dx 1 1 8 = 4 3 3 x 2 4 4 = 32 (8) 3 − 32 (1) 3 = 32 (2)4 − 3 2 = 45 . 2 1 4 (b) Rπ 0 (ex − sin(x))dx Solution. π Z π x x (e − sin(x))dx = (e + cos(x)) = (eπ + cos(π)) − (e0 + cos(0)) 0 0 π = e − 1 − (1 + 1) = eπ − 3. 4 (c) Rπ −π (sin(x) + cos(x))dx Solution. π Z π (sin(x) + cos(x))dx = [− cos(x) + sin(x)] −π −π = [− cos(π) + sin(π)] − [− cos(−π) + sin(−π)] = [1 + 0] − [1 + 0] = 0. 4 (d) R2 2 dx 1 x3 Solution. Z 1 2 2 dx = x3 Z 1 2 2 2x−3 dx = −x−2 = [− 41 ] − [−1] = 34 . 1 4 (3) Compute of the following using the substitution method: R 1 2each 3 (a) −1 x (x + 1)4 dx 1 2 Solution. Let u = x3 + 1. Then du = 3x2 dx. Z x=1 Z 1 Z 1 x=1 4 2 4 du 2 3 4 xu x (x + 1) dx = u du = 3x2 3 x=−1 x=−1 −1 x=1 1 5 3 5 1 = 31 [ 15 u ] = 15 (x + 1) −1 x=−1 1 1 ((1)3 + 1)5 ] − [ 15 ((−1)3 + 1)5 ] = = [ 15 32 . 15 4 (b) R1 ex 0 1+ex dx Solution. Let u = 1 + ex . Then du = ex dx. Z 1 Z x=1 x Z x=1 ex e du 1 dx = = du x x 0 1+e x=0 u e x=0 u x=1 x=1 = ln |u| = ln |1 + ex | = ln |1 + e| − ln |1 + e0 | x=0 x=0 = ln(1 + e) − ln(2). 4 (c) R π/2 −π/2 sin5 (x) cos(x)dx Solution. Let u = sin(x). Then du = cos(x)dx. Z x=π/2 Z x=π/2 du 5 5 = u5 du u cos(x) sin (x) cos(x)dx = cos(x) x=−π/2 x=−π/2 −π/2 x=π/2 π/2 = 61 u6 = 16 sin6 (x) Z π/2 = [ 61 x=−π/2 sin6 ( π2 )] − [ 16 6 sin −π/2 π (− 2 )] = [ 61 (1)6 ] − [ 16 (−1)6 ] = 0. 4 (d) R eπ 1 sin(ln(x)) dx x Solution. Let u = ln(x). Then du = x1 dx. Z eπ Z x=eπ Z x=eπ sin(ln(x)) sin(u) dx = xdu = sin(u)du x x 1 x=1 x=1 x=eπ eπ = − cos(u) = − cos(ln(x)) x=1 π 1 = [− cos(ln(e ))] − [− cos(ln 1))] = [− cos(π)] − [− cos(0)] = 1 − [−1] = 2. 4 3 (4) The concentration of a certain drug in a patient’s bloodstream t hours after injection is 0.2t C(t) = 2 t +1 3 mg/cm . Determine the average concentration of the drug in the patient’s bloodstream over the first 4 hours after the drug injection. Solution. We want to compute Z 1 4 0.2t dt, 4 0 t2 + 1 that is, we want to compute the average value of the function C(t) on the interval [0, 4]. Let u = t2 + 1 and du = 2tdt. Then Z Z Z Z Z t=4 1 1 t=4 0.2t du 1 t=4 .2 1 t=4 1 1 1 1 4 0.2t dt = = du = du = du 2 4 0 t +1 4 t=0 u 2t 8 t=0 u 8 t=0 5 u 40 t=0 u t=4 4 1 1 2 ln |u| = ln(t + 1) = 40 40 t=0 0 1 1 = ln(42 + 1) − ln(02 + 1) 40 40 1 = [ln(17) − ln(1)] = .0708mg/cm3 . 40 4 (5) Find the area bound by the given curves: (a) y = sin(x), y = cos(x), x = π4 , and x = 5π . 4 Solution. 5π Z 5π 4 4 [sin(x) − cos(x)]dx = [− cos(x) − sin(x)] π 4 π 4 = [− cos( 5π ) − sin( 5π )] − [− cos( π4 ) − sin( π4 )] 4 4 √ √ =[ 2 2 + √ = 2 2. 2 ] 2 √ − [− 2 2 √ − 2 ] 2 4 (b) y = x2 and y = −x2 + 1. Solution. x2 = −x2 + 1 ⇐⇒ 2x2 = 1 ⇐⇒ x2 = 1 2 ⇐⇒ x = ± √12 = ± √ 2 . 2 4 √ 2 2 Z √ − 22 [(−x2 + 1) − x2 ]dx = Z √ 2 2 √ − 22 [−2x2 + 1]dx √2 2 = [− 23 x3 + x] √ 2 − 2 √ 2 3 2 ) + ] 2 2 √ = [− 23 ( − [− 32 (− √ √ √ = − 13 2 + 2 = 23 2. √ 2 3 ) 2 √ − 2 ] 2 4 (c) y = x2 , y = Z 0 −1 √ 3 x, x = −1, and x = 1. Solution. 0 1 Z 1 4 4 √ √ 2 2 3 3 3 3 1 3 1 3 3 3 [x − x]dx + [ x − x ]dx = [ 3 x − 4 x ] + [ 4 x − 3 x ] 0 −1 = = 4 [0 − ( 31 (−1)3 − 34 (−1) 3 )] 1 + 34 + 34 − 13 = 23 . 3 + 0 4 [ 34 1 3 − 13 13 − 0] 4 2 (d) y = x and y = 4. Solution. x2 = 4 ⇐⇒ x = ±2. 2 Z 2 2 1 3 [4 − x ]dx = [4x − 3 x ] = [8 − 83 ] − [−8 + 83 ] −2 = 16 − 16 3 = −2 48−16 3 = 32 . 3 4 (6) Find the area of the region bounded above by the graph of y = x and below by the graph of y = sin(x) from x = 0 to x = π. Solution. Z π [x − sin(x)]dx = 0 [ 21 x2 π 2 + cos(x)] = [ π2 + cos(π)] − [cos(0)] 0 = 2 [ π2 − 1] − [1] = π2 2 −2 4