Download Solution

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Calculus II
Math 116
Homework 3
Due Friday Feb. 14
(1) Let f (x) = x3 , and compute the Riemann sum of f over the interval [1, 2], using
5 subintervals of equal length and choosing the representative points to be the left
endpoints of the subintervals.
Solution. ∆x = 2−1
= 15 = .2. Then our 5 subintervals are [1, 1.2], [1.2, 1.4], [1.4, 1.6],
5
[1.6, 1.8], and [1.8, 2]. So the Riemann sum is
(.2)[f (1)+f (1.2)+f (1.4)+f (1.6)+f (1.8)] = (.2)[(1)3 +(1.2)3 +(1.4)3 +(1.6)3 +(1.8)3 ] = 3.08.
4
(2) Compute
each of the following:
R8 √
3
(a) 1 2 xdx
Solution.
Z
Z 8
√
3
2 xdx =
8
1
2x 3 dx
1
1
8
=
4
3 3
x 2
4
4
= 32 (8) 3 − 32 (1) 3 = 32 (2)4 −
3
2
=
45
.
2
1
4
(b)
Rπ
0
(ex − sin(x))dx
Solution.
π
Z π
x
x
(e − sin(x))dx = (e + cos(x)) = (eπ + cos(π)) − (e0 + cos(0))
0
0
π
= e − 1 − (1 + 1) = eπ − 3.
4
(c)
Rπ
−π
(sin(x) + cos(x))dx
Solution.
π
Z π
(sin(x) + cos(x))dx = [− cos(x) + sin(x)]
−π
−π
= [− cos(π) + sin(π)] − [− cos(−π) + sin(−π)]
= [1 + 0] − [1 + 0] = 0.
4
(d)
R2
2
dx
1 x3
Solution.
Z
1
2
2
dx =
x3
Z
1
2
2
2x−3 dx = −x−2 = [− 41 ] − [−1] = 34 .
1
4
(3) Compute
of the following using the substitution method:
R 1 2each
3
(a) −1 x (x + 1)4 dx
1
2
Solution. Let u = x3 + 1. Then du = 3x2 dx.
Z x=1
Z 1
Z
1 x=1 4
2 4 du
2 3
4
xu
x (x + 1) dx =
u du
=
3x2
3 x=−1
x=−1
−1
x=1
1
5
3
5
1
= 31 [ 15 u ]
= 15
(x + 1) −1
x=−1
1
1
((1)3 + 1)5 ] − [ 15
((−1)3 + 1)5 ] =
= [ 15
32
.
15
4
(b)
R1
ex
0 1+ex
dx
Solution. Let u = 1 + ex . Then du = ex dx.
Z 1
Z x=1 x
Z x=1
ex
e du
1
dx =
=
du
x
x
0 1+e
x=0 u e
x=0 u
x=1
x=1
= ln |u|
= ln |1 + ex |
= ln |1 + e| − ln |1 + e0 |
x=0
x=0
= ln(1 + e) − ln(2).
4
(c)
R π/2
−π/2
sin5 (x) cos(x)dx
Solution. Let u = sin(x). Then du = cos(x)dx.
Z x=π/2
Z x=π/2
du
5
5
=
u5 du
u cos(x)
sin (x) cos(x)dx =
cos(x)
x=−π/2
x=−π/2
−π/2
x=π/2
π/2
= 61 u6 = 16 sin6 (x)
Z
π/2
=
[ 61
x=−π/2
sin6 ( π2 )] − [ 16
6
sin
−π/2
π
(− 2 )] = [ 61 (1)6 ]
− [ 16 (−1)6 ] = 0.
4
(d)
R eπ
1
sin(ln(x))
dx
x
Solution. Let u = ln(x). Then du = x1 dx.
Z eπ
Z x=eπ
Z x=eπ
sin(ln(x))
sin(u)
dx =
xdu =
sin(u)du
x
x
1
x=1
x=1
x=eπ
eπ
= − cos(u)
= − cos(ln(x))
x=1
π
1
= [− cos(ln(e ))] − [− cos(ln 1))]
= [− cos(π)] − [− cos(0)] = 1 − [−1] = 2.
4
3
(4) The concentration of a certain drug in a patient’s bloodstream t hours after injection
is
0.2t
C(t) = 2
t +1
3
mg/cm . Determine the average concentration of the drug in the patient’s bloodstream over the first 4 hours after the drug injection.
Solution. We want to compute
Z
1 4 0.2t
dt,
4 0 t2 + 1
that is, we want to compute the average value of the function C(t) on the interval
[0, 4]. Let u = t2 + 1 and du = 2tdt. Then
Z
Z
Z
Z
Z t=4
1
1 t=4 0.2t du
1 t=4 .2
1 t=4 1 1
1
1 4 0.2t
dt =
=
du =
du =
du
2
4 0 t +1
4 t=0 u 2t
8 t=0 u
8 t=0 5 u
40 t=0 u
t=4
4
1
1
2
ln |u| =
ln(t + 1)
=
40
40
t=0
0
1
1
=
ln(42 + 1) −
ln(02 + 1)
40
40
1
= [ln(17) − ln(1)] = .0708mg/cm3 .
40
4
(5) Find the area bound by the given curves:
(a) y = sin(x), y = cos(x), x = π4 , and x =
5π
.
4
Solution.
5π
Z 5π
4
4
[sin(x) − cos(x)]dx = [− cos(x) − sin(x)]
π
4
π
4
= [− cos( 5π
) − sin( 5π
)] − [− cos( π4 ) − sin( π4 )]
4
4
√
√
=[
2
2
+
√
= 2 2.
2
]
2
√
− [−
2
2
√
−
2
]
2
4
(b) y = x2 and y = −x2 + 1.
Solution.
x2 = −x2 + 1 ⇐⇒ 2x2 = 1 ⇐⇒ x2 =
1
2
⇐⇒ x = ± √12 = ±
√
2
.
2
4
√
2
2
Z
√
− 22
[(−x2 + 1) − x2 ]dx =
Z
√
2
2
√
− 22
[−2x2 + 1]dx
√2
2
= [− 23 x3 + x] √
2
− 2
√
2 3
2
)
+
]
2
2
√
= [− 23 (
− [− 32 (−
√
√
√
= − 13 2 + 2 = 23 2.
√
2 3
)
2
√
−
2
]
2
4
(c) y = x2 , y =
Z
0
−1
√
3
x, x = −1, and x = 1.
Solution.
0
1
Z 1
4 4
√
√
2
2
3
3
3 3
1 3 1 3
3 3 [x − x]dx +
[ x − x ]dx = [ 3 x − 4 x ] + [ 4 x − 3 x ]
0
−1
=
=
4
[0 − ( 31 (−1)3 − 34 (−1) 3 )]
1
+ 34 + 34 − 13 = 23 .
3
+
0
4
[ 34 1 3
− 13 13 − 0]
4
2
(d) y = x and y = 4.
Solution.
x2 = 4 ⇐⇒ x = ±2.
2
Z 2
2
1 3 [4 − x ]dx = [4x − 3 x ] = [8 − 83 ] − [−8 + 83 ]
−2
= 16 −
16
3
=
−2
48−16
3
=
32
.
3
4
(6) Find the area of the region bounded above by the graph of y = x and below by the
graph of y = sin(x) from x = 0 to x = π.
Solution.
Z
π
[x − sin(x)]dx =
0
[ 21 x2
π
2
+ cos(x)] = [ π2 + cos(π)] − [cos(0)]
0
=
2
[ π2
− 1] − [1] =
π2
2
−2
4
Related documents