Download Lecture 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
CS284A Algorithms for Molecular Biology
Instructor: Xiaohui Xie
Universityy of California,, Irvine
Today’s Goals
• Course information
• Challenges in bioinformatics/computational biology
• Brief intro to molecular biology
Course Information
•
•
•
•
Lecture: TT 3:30-4:50pm in ICS 253
Grading
g based on
– Class participation (30%) and course project (70%)
– For course projects, we encourage team efforts (2-3
students each team)
Office hours: TT after class
Course Prerequisites:
– Basic programming skills (such as Python or Perl)
– Statistics, Calculus, basic knowledge of biology
Course Goals
• Introduction to the growing field of
bioinformatics/computational biology
– Fundamental p
problems in computational
p
biology
gy
– Statistical, algorithmic and machine learning techniques
– Overall survey of the field
References
• Recommended Textbooks:
– R. Durbin, S. Eddy, A. Krogh and G. Mitchison. Biological
Sequence Analysis
• Most materials will be available from the course website:
http://www.ics.uci.edu/~xhx/courses/CS284a/
with lecture notes and references
Why bioinformatics?
Bioinformatics = Biology
gy + Information
AGATTTCGATTATCCTTATAGTTCATACATGCATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCAT
ACATGCATGCTTCAATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCATGCTTCAACTACTTAATAAATGATTGTATGATAA
TGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCTCCTTATCCTTATAGTTCA
TACATGCTTCAACTACTTAATAAATGATTGTATGATAATTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCA
TGCTTCAACTGAGATTTCGATTATCCTTATAGTTCATACATGCATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCC
TTATAGTTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCATGCTTCAACTACTTAATAAATGATTGTA
TGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCTCCTTATCCTTAT
AGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAA
TGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAAT
GTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCT
AGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTTCAATGTAAGAGATT
TCGATTATCCTTATAGTTCATATGCTTCAACTACTTAATAAATGATCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTA
TAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGAATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTT
TCAATGTAAGAGATTTCGATTATCTTATAGTTCATACACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTAT
AGTTCATACATGCATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTT
CAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCATGCTTCAA
CTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGTATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGA
TGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACATATCCATATCTAATCTTACTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTA
GCCTAAAAAAACCTTCTCTTTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGA
AGACTCTCCTCCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTA
TGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTAT
TTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTG
TATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGA
AGAAGTGATTGTACCTGAGTTCAATTCTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAA
ACCGGATTTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGATTTTGATATGCTTTG
CGCCGTCAAAGTTTTGAACGATGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAATCTTTAAGAGTCTTGAAGGCTGTGAAATTAATGA
CTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATGAACGAGTCTCATTCAGGTTGGTACGATAAACTTTACGAATGTTCTTGTCCAG
AGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATCATATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAA
ATGGCAACATAGAAAAGGTAAAAGAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAAC
CAGCATTGGGCAGCTGTCTATATGAATTAGTCAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACTTTAGCATCACAAAAT
ACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACA
AACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGTATGATAATGATATGACTACCATTTTGTTATTGTA
CGTGGGGCAGTTGACGTCTTATCATATGTCAAAGAAAATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCA
ACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGC
GTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGT
TGCCAACTGACGAGATGCAGTTTCCTACGCATAATAAGAATAGGAGGGAATATGCAGGAGAACGCCAGACAATCTATCATTACATTTAAGCGGCTCTTCAAAAAGATT
GAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAAGAGTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTA
TGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGTAATACGCTGAAAAACCTCAATACAGCTCATTCTGGAAGAAATAGTGTTTCTTGTACAACCAGGACTTGAAGC
CCGTCGAAAAAGAAAGGCGGGTTTGGGATTGGGTACGGTTTCGTTGGTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCA
TCTAGAGCATCATTCGGTATTTTCTTCTCTTTATGGCCCGTTATTAACAGAGTCGTCATGGCCATCGTTTGGTATAGTGTCCAAGCTTATATTGCGGCAACTCCCGTA
TCATTAATGCTGAAATCTATCTTTGGAAAAGATTTACAATGATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGC
CAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAA
CTTTAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACA
TGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATG
ATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAAATAAAGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCC
TTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTGTATGATTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATA
ATGTTTTCAATGTAAGATTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAAT
GATTCATACATGCTTCAACTACTGTAAATAATTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCATAGTTCA
TACATGCTTCAACTACTT
The human genome is 400,000 longer
th the
than
th sequence shown
h
h
here.
AGATTTCGATTATCCTTATAGTTCATACATGCATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATA
CATGCATGCTTCAATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCATGCTTCAACTACTTAATAAATGATTGTATGATAATG
TTTTCAATGTAAGAGATTTCGATTATCCTTATGATTGTATGATAATGTTTTCTCCTTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAA
TTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCATGCTTCAACTGAGATTTCGATTATCCTTATAGTTCATAC
ATGCATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTACTTAATAAATGATTGTATGATAATGTTTTCA
ATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATA
GTTCATACATGCATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCTCCTTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGAT
AATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATC
CTTATAGTTCATACATGCATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACAT
GCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAAT
GTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATATGCTTCAACTACTTAATAAATGAT
CAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGAATTTC
GATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCTTATAGTTCATACACATGCTTCAA
CTACTTAATAAATGCAGATGCTGTTGGACTTCATGTCCCCAACCTAGCTTGGTGCACAGCATTTATTGTATGAAGAGATTTCGATTATCCTTATAGTTCATACATGCAT
AGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAAT
GATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCATGCTTCAACTACTTAATAAATGATT
GTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGTATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTA
ATAATCATATTACATGGCATTACCACCATATACATATCCATATCTAATCTTACTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCT
TTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCC
TCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATGAAGAGGAAAAATT
GGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGA
AGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCA
TAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAA
TTCTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGGATTTTGTTGCTAGATCGCCT
GGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGATTTTGATATGCTTTGCGCCGTCAAAGTTTTGAACGATGAGA
TTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAATCTTTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAG
ACTTTTTCAAGCAATTTGGTGCCTTGATGAACGAGTCTCATTCAGGTTGGTACGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTT
GTCAAATGGATCATATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAAAAGAAGCC
CTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCAGCATTGGGCAGCTGTCTATATGAATTAG
TCAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACTTTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTAT
AGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATA
TGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGAAAATTTGC
GAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAG
ATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTA
TTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTTTCCTACGCATAATAAGAATAGGAG
GGAATATGCAGGAGAACGCCAGACAATCTATCATTACATTTAAGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAA
ATAATGTGGATTTGGAAAAAGAGTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATA
CAGCTCATTCTGGAAGAAATAGTGTTTCTTGTACAACCAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGGATTGGGTACGGTTTCGTTGGTGCTTTTGTTGT
TTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCTTCTCTTTATGGCCCGTTATTAACAGAGTCGTCATG
GCCATCGTTTGGTATAGTGTCCAAGCTTATATTGCGGCAACTCCCGTATCATTAATGCTGAAATCTATCTTTGGAAAAGATTTACAATGATTGTACGTGGGGCAGTTGA
CGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGA
TTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCT
TGACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCC
TTATAGTTCATACATGCTTCAACTACTTAATAATGCACTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAAATAAAGCTTCAACTACTTAATAAAT
GATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTGTATGATTTATA
GTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGATTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGA
TTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTCATACATGCTTCAACTACTGTAAATAATTAATAAATGATTGTATGATAATGTTTTCAATGTAAG
AGATTTCGATTATCCTTATAGTTCATACATGCATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATTAT
AGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAAATAAAATGTAAGAGATTTCGATTATCCTTATAGTTCATACEEEEEEECATGCGTTG
ACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTTGATTG
TATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTGTATGATTTATATCG
Why bioinformatics?
• Lots of data
• Pattern finding,
finding rule discovery
• Allowing analytic and predictive methodologies that
support and enhance lab work
• Informatics infrastructure (data storage, retrieval)
• Data visualization
• Life itself is a computer!
Genome as a computer program
Computer Program
Genome
Data
Method
Class
Encapsiluation
Virus
Deterministic
Precise
Gene
Regulatory code
Modularity
Histone code
Virus
Stochastic
Redundant
Four Aspects
• Biology
– What
What’s
s the underlying problem?
• Algorithm
– How
o to so
solve
e tthe
ep
problem
ob e e
efficiently?
ce ty
• Learning
– How to model biology
gy systems
y
and learn from observed
data?
• Statistics
– How to differentiate true phenomena from artifacts?
Topics to be covered
• DNA/RNA/Protein sequence analysis
–
–
–
–
Gene discovery
Pattern finding (motif discovery
discovery, EM
EM-algorithm)
algorithm)
Sequence alignment (Smith-Waterman, BLAST)
Models of sequences (HMM)
• Algorithms
Al ith
for
f large-scale
l
l d
data
t analysis
l i
– Clustering algorithms (Hierarchical clustering, K-means)
– Inferring gene networks (Regression, Bayesian networks)
• *Evolutionary models
– Phylogenetic trees
– Comparative
p
Genomics
• *Protein world (if time allows)
– Secondary & tertiary structure prediction
*:: Depending on the availability of time
Introduction to Molecular Biology and
Genomics
Different Life Forms Share a Common Genetic Framework
Deoxyribonucleic acid (DNA)
•
can be thought of as the “blueprint” for an organism
•
composed of small molecules called nucleotides
– four different nucleotides distinguished by the four bases:
adenine (A), cytosine (C), guanine (G) and thymine (T)
•
i a polymer:
is
l
l
large
molecule
l
l consisting
i ti off similar
i il units
it ((nucleotides
l tid iin thi
this case))
•
DNA is digital information
•
a single strand of DNA can be thought of as a string composed of the four
letters: A, C, G, T
AGCGGTTAAGGCTGATATGCGCTTTAA
TCGCCAATTCCGACTATACGCGAAATT
The Double Helix
DNA molecules usually consist of two strands arranged in the famous
double helix
Genomes
•
The term genome refers to the complete complement of
DNA for a given species
•
The human genome consists of 46 chromosomes
•
–
Male: 22 pairs of autosomes + XY
–
Female: 22 pairs of autosomes + XX
Every cell (except sex cells and mature red blood cells)
contains the complete genome of an organism
Human Genome (Male)
22 pairs of autosomes + sex chromosomes (XY)
Human Genome (Female)
22 pairs of autosomes + sex chromosomes (XX)
Human Chromosomes
Karyogram
The Central Dogma
RNA
• RNA is like DNA except:
– backbone is a little different
– usually single stranded
– the base uracil (U) is used in place of thymine (T)
• A strand of RNA can be thought of as a string
composed of the four letters: A, C, G, U
The Genetic Code
64 combinations: 20 amino acids + stop codon
Proteins
• Proteins are molecules composed of one or more
polypeptides
• A polypeptide is a polymer composed of amino
acids
• Cells build their proteins from 20 different amino
acids
• A polypeptide can be thought of as a string
composed from a 20-character alphabet
Genes
• Genes are the basic units of heredity
• A gene is a sequence of bases that carries the
information required for constructing a particular
protein (p
p
(polypeptide
yp p
really)
y)
• Such a gene is said to encode a protein
22,000 genes
• The human genome comprises ~22,000
• Those genes encode >100,000 polypeptides
• RNA genes: microRNAs and other small RNAs
Codons and Reading Frames
Translation
• Ribosomes are the machines that synthesize
proteins from mRNA
• The grouping of codons is called the reading frame
• Translation begins with the start codon
• Translation ends with the stop codon
Readout from the genome
Comparison of genome size
Organisms
Genomes
Haemophilus Methannococcus
Saccharomyces
Caenorhabditis
Drosophila
Mus
Homo
influenzae
cerevisiae
elegans
Melanogaster
musculus
sapiens
(baker’s yeast)
(nematode
worm)
(fruit fly)
(laboratory
mouse)
(man)
jannaschii
Genome
(MB)
1.83
1.66
13
97
180
3200
3500
Number
of genes
1709
1682
6241
18,424
13,500
~30,000
~30,000
Genes
The DNA strings include:
• Coding regions (“genes”)
–
–
–
–
E. coli has ~4,000 genes
Yeast has ~6,000 genes
C Elegans has ~18
C.
18,000
000 genes
Humans have ~30,000 genes
• Control regions
– These typically are adjacent to the genes
– They determine when a gene should be “expressed”
• “Junk”
Junk DNA (better to be called DNA with unknown function)
98% of the human genome unknown
Human
Genome
~3Gb
Coding exons
1.5%
Other known
function
0.2%
Others
48%
Repeats
50%
?
The Cell
All cells of an organism contain the same DNA content
(and the same genes) yet there is a variety of cell types.
Example: Tissues in Stomach
How is this variety encoded and expressed ?
Source: A
Alberts et al
The Tree of Life
Related documents