Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CEGEP CHAMPLAIN - ST. LAWRENCE 201-NYA-05: Differential Calculus Patrice Camiré Factorization 1. Factor the following polynomials as much as possible. (a) 3x2 − x (f) −x2 + x + 12 (b) x2 − 2x − 15 (g) −x2 + 9 2 (c) 5x + 3x + 1 2 (k) x4 − 2x3 − 8x2 (l) x7 − 13x6 + 42x5 2 (h) −x + 5x + 24 (d) x + 6x + 5 (i) x2 − 18x + 81 (e) x2 − 6x + 8 (j) x2 + 9x + 20 (m) 3x2 − 6x − 24 (n) 3x2 − 4x − 4 2. Use long division to factor each polynomial as a product of two (or more) polynomials given a specific zero. (a) 2x2 − 3x − 2, zero: x = 2. (c) x3 + 3x2 + 3x + 1, zero: x = −1. (b) 3x2 + 17x + 20, zero: x = −4. (d) −x4 + x3 + 3x2 − 3x − 4, zero: x = −1. 3. Factor the following polynomials as much as possible. (a) x3 − 27 (c) x3 + 1 (b) x3 − 1 (d) x4 − 1 (e) x3 + 8 (f) x5 − 32 4. Factor and simplify the following expressions as much as possible. (a) (2x + 1)3 (x − 4)2 + 3(2x + 1)2 (x − 4)3 (b) 2(3x − 2)8 (6x − 1)4 − 10(3x − 2)9 (6x − 1)3 (c) (4x + 3)1/2 (x + 5)11/4 − (4x + 3)5/2 (x + 5)3/4 (d) (x + 8)−1/5 (3x − 1)4/3 − (x + 8)9/5 (3x − 1)−2/3 5. Write each expression as a simplified fraction; factor the numerator and denominator as much as possible. 1 2 − (a) x + 12 x + 3 x −1 x 6 − 1 x+1 (b) x − x2 + 3x − 10 (c) (d) x2 + 7x + 12 2 7 + x+1 4−x x2 − x − 30 x+2 x−1 − x + 6 3x + 17 Answers 1. (a) x(3x − 1) (h) −(x + 3)(x − 8) (b) (x − 5)(x + 3) (i) (x − 9)2 (c) 5x2 + 3x + 1 (j) (x + 4)(x + 5) (d) (x + 1)(x + 5) (k) x2 (x − 4)(x + 2) (e) (x − 2)(x − 4) (l) x5 (x − 6)(x − 7) (f) −(x − 4)(x + 3) (g) −(x − 3)(x + 3) (m) 3(x − 4)(x + 2) 2 (n) 3(x − 2) x + = (x − 2)(3x + 2) 3 2. (a) (x − 2)(2x + 1) (b) (3x + 5)(x + 4) (c) (x + 1)3 (d) (x + 1)(−x3 + 2x2 + x − 4) 3. (a) (x − 3)(x2 + 3x + 9) (d) (x − 1)(x + 1)(x2 + 1) (b) (x − 1)(x2 + x + 1) (e) (x + 2)(x2 − 2x + 4) (c) (x + 1)(x2 − x + 1) (f) (x − 2)(x4 + 2x3 + 4x2 + 8x + 16) 4. (a) (5x − 11)(2x + 1)2 (x − 4)2 (b) −18(x − 1)(3x − 2)8 (6x − 1)3 2 8 x− (4x + 3)1/2 (x + 5)3/4 (c) −15 x + 5 3 7 9 (d) 8 x + x− (x + 8)−1/5 (3x − 1)−2/3 4 2 5. (a) (b) −1 (x + 3)(x + 1)2 1 (c) − (x + 1)(x + 4)(x − 4) 5 x−3 (x − 1)(x + 1)(x + 5) (d) (x − 6)(x + 6)(3x + 17) 2(x + 4)