Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Notes for Test 1. Math 142, Calculus II, Fall 2016 1 Definite Integrals Example 1) The integral of a piecewise function Find the following integral: Z 4 f (x) dx, −3 2 x if − 3 ≤ x ≤ −1, where f (x) = 2x if − 1 < x ≤ 0, √x if 0 ≤ x ≤ 4 Solution: We use the property of splitting the integral over the interval of integration Z 4 Z −1 Z 0 Z 4 f (x) dx = f (x) dx + f (x) dx + f (x) dx −3 −3 −1 0 Z 4 Z 0 Z −1 √ 2 2x dx + x dx x dx + = −1 −3 3 −1 0 0 4 x 2 = + x2 + x3/2 −1 0 3 −3 3 −1 −27 2 √ 3 − ( 4) − 0 = + (0 − 1) + 3 3 3 2 39 26 − 1 + (8) = = 13. = 3 3 3 J Example 2) The integral of an absolute value function (Still piecewise function) Find the following integral: Z 3π/2 |sin x| dx. 0 Solution: The sin x function is non-negative for x in the first and second quadrants, i.e., x ∈ [0, π], and nonpositive in the third and fourth quadrants, i.e, x ∈ [π, 2π]. Thus, on the interval of integration [0, 3π/2], we have ( sin x if 0 ≤ x ≤ π, |sin x| = − sin x if π ≤ x ≤ 3π/2. Notes for Test 1. 2 Math 142, Calculus II, Fall 2016 Therefore, Z 3π/2 Z π Z 3π/2 |sin x| dx = sin x dx + (− sin x) dx 0 π π = − cos x + cos x|π3π/2 0 0 3π − cos π) 2 = −(−1 − 1) + (0 − (−1)) = 3. = −(cos π − cos 0) + (cos J Fundamental Theorem of Calculus II Recall: FTC(II): Suppose f (t) is a continuous function on [a, b]. Then, for any x ∈ [a, b] Z x d f (t) dt = f (x). (Case 1) dx a If instead of x you have a function g(x), then by the chain rule of derivative Z g(x) d (Case 2) f (t) dt = f (g(x)) · g 0 (x). dx a If instead of a you have a function h(x), then by splitting the integral into two integrals and then using the chain rule of derivative ! Z g(x) Z g(x) Z a d d f (t) dt (Case 3) f (t) dt = f (t) dt + dx h(x) dx a h(x) ! Z g(x) Z h(x) d f (t) dt = f (t) dt + − dx a a Z h(x) Z g(x) d d =− f (t) dt + f (t) dt dx a dx a = −f (h(x)) · h0 (x) + f (g(x)) · g 0 (x) = f (g(x)) · g 0 (x) − f (h(x)) · h0 (x). Example 1) d dy Z y tan2 (x2 − 1) dx = tan2 (y 2 − 1). 0 Example 2) d dz Z csc(z/3) e 0 x3 −x csc3 (z/3)−csc(z/3) dx = e 1 · − csc(z/3) cot(z/3) · 3 1 3 = − csc(z/3) cot(z/3)ecsc (z/3)−csc(z/3) . 3 Notes for Test 1. Math 142, Calculus II, Fall 2016 Note: The derivative of csc(z/3) by using chain rule is d z 1 d csc(z/3) = − csc(z/3) cot(z/3) · = − csc(z/3) cot(z/3). dz dz 3 3 Example 3) d dx Z x3 sec(t + 5) dt = sec(x3 + 5) · (x3 )0 − sec(sin x + 5) · (sin x)0 sin x = 3x2 sec(x3 + 5) − cos x sec(sin x + 5). 3