Download formula sheet

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 152 Calculus Formula
b
1.
Substitution Rule

g (b )
f ( g ( x))  g ( x)dx 
a
2.
 f (u)du
g (a)
 f ( x) g ( x)
Integration by Parts
f ( x)G( x)   f ( x)G( x)dx
=
d
b
3.
Volume of revolutions
 A( x)dx
V =
or
V =
a
c
d
b
2
V =    f ( x) dx
Volume of revolution (disk)
 A( y)dy
or
V =   f ( y ) dy

a
Volume of revolution (cylindrical shells)
b
4.
Arc Length
L =

a
 dy 
1  
 dx 
c
V =
b
d
a
c
 2xf ( x)dx or V =  2yf ( y)dy
2
d
dx
or
Surface of revolution S =

 dx 
1   
 dy 
d
2
 2f ( x) 1   f ' ( x) dx or S =
 2g ( y )
a
c
2
b
6.
L=
c
b
5.
Average value of a function
fave =
2
1
f ( x)dx
b  a a
dy
1  g ' ( y )  dy
2
Definite Integral
b

n
f ( x)dx  lim  f ( xi* )  x. , where xi* [ xi 1 , xi ] is a sample point and
n 
a
i 1
ba
x 
. x0  a, xi  a  i  x, xn  b.
n
Trapezoidal Rule
x
 f ( x0 )  2 f ( x1 )  2 f ( x2 )  ...  2 f ( xn1 )  f ( xn )
Tn 
Error Bound (Trapezoidal Rule)
If f ( x)  K x  [a, b],
2
ET 
K (b  a)3
K (b  a)3
and EM 
2
12n
24n 2
Simpson’s Rule
x
 f ( x0 )  4 f ( x1 )  2 f ( x2 )  4 f ( x3 )...  2 f ( xn2 )  4 f ( xn1 )  f ( xn )
Sn 
3
Error Bound (Simpson’s
Rule)
If f ( 4) ( x)  K x  [a, b],
ES 
K (b  a)5
180n 4
Table of Indefinite Integrals
 kdx kx  C
n
 x dx 
x n 1
 C, n  1
n 1
x
x
 e dx e  C
x
 a dx 
 sin x dx   cos x  C
 sec x dx  tan x  C
2
x
1
 x dx  ln x  C
1
dx  tan 1 x  C
1
2
ax
C
ln a
 cos x dx  sin x  C
 csc x dx   cot x  C
2

1
1 x
2
dx  sin 1 x  C
 tan xdx  ln sec x  C
 sec xdx  ln sec x  tan x  C
Trigonometric Identities.
cos 2 x  sin 2 x  1
1  cos 2 x
2
1  cos 2 x
2
cos x 
2
sin 2 x 
sec2x = 1 + tan2x
 
 cos
2
2
 
 
cos   cos   2 sin
 sin
2
2
 
 
sin   sin   2 sin
 cos
2
2
cos   cos   2 cos
 
Related documents