Download Solutions for Review Problems for the Calculus I/Precalculus

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Solutions for Review Problems
for the Calculus I/Precalculus Placement Test - Fall, 2000
I. Basic Algebra Skills - 4. Polynomials
Polynomial Equations:
1. Determine if x = ?2 is a solution of the equation Ýx ? 1ÞÝx 2 + 4ÞÝ2x ? 1ÞÝx + 3Þ = 0.
Since x + 2 is not a factor of the left-hand side of the equation, x = ?2 is not a solution.
2. Solve the equation Ý3x + 4ÞÝx 2 ? x ? 1ÞÝ2x 2 + 3x ? 1Þ = 0.
Ý3x + 4ÞÝx 2 ? x ? 1ÞÝ2x 2 + 3x ? 1Þ = 0 if and only if 3x + 4 = 0, x 2 ? x ? 1 = 0, or 2x 2 + 3x ? 1 = 0.
3x + 4 = 0, x = ? 43 ;
x 2 ? x ? 1 = 0, x =
2x 2 + 3x ? 1 = 0, x
Solutions: x = ? 43 ,
?Ý?1Þ± Ý?1Þ 2 ?4Ý1ÞÝ?1Þ
= 1±2 5
2
3± 3 2 ?4Ý2ÞÝ?1Þ
=
= 3± 417 .
2Ý2Þ
1+ 5 1? 5
, 3+ 417 , 3? 417 .
2
2
;
3. Solve each equation by factoring.
(a) 81x 6 ? 64 = 0
81x 6 ? 64 = ÝÝ9x 3 Þ 2 ? 8 2 Þ = Ý9x 3 ? 8ÞÝ9x 3 + 8Þ = 0
9x 3 ? 8 = 0, x 3 = 89 , x = 3 89 = 32 ;
9
9x 3 + 8 = 0, x 3 = ? 89 , x =
Solutions: x =
2
39
3
? 89 = ? 32 .
, x = ? 32 .
9
9
(b) x 4 + 2x 3 ? 8x ? 16 = 0
x 4 + 2x 3 ? 8x ? 16 = x 3 Ýx + 2Þ ? 8Ýx + 2Þ = Ýx + 2ÞÝx 3 ? 8Þ
x + 2 = 0, x = ?2; x 3 ? 8 = 0, x = 3 8 = 2.
Solutions: x = ?2, x = 2.
(c) x 4 + 5x 2 ? 36 = 0
x 4 + 5x 2 ? 36 = Ýx 2 + 9ÞÝx 2 ? 4Þ = Ýx 2 + 9ÞÝx ? 2ÞÝx + 2Þ
x 2 + 9 ® 0, no solution from this equation.
x ? 2 = 0, x = 2; x + 2 = 0, x = ?2.
Solutions: x = 2, x = ?2.
Polynomial Functions and Graphs:
1. Based on the graph of y = x 3 , sketch the graph of the function gÝxÞ = Ýx + 1Þ 3 ? 2 without using
calculator.
200
150
50
-4
0
-2
2 x
4
-50
-100
– y=x 3 , -. y=(x+1) 3 ? 2
2. Based on the graph of y = x 4 , sketch the graph of the function gÝxÞ = ?Ýx ? 2Þ 4 + 1 without using
calculator.
4
2
-2
-1
1
2
3
4
-2
-4
- y=x 4 , -. y=-(x-2) 4 ? 1
3. Determine the right-hand and left-hand behavior of the graph of the polynomial function without
sketching the graph.
(a) fÝxÞ = 2x 5 ? 5x + 7. 5
Since the coefficient of x 5 is 2 > 0, lim x¸+K fÝxÞ = +K and lim x¸?K fÝxÞ = ?K.
(b) gÝxÞ = ? 14 Ý3x 4 ? 2x + 5Þ
gÝxÞ = ? 34 x 4 + 12 x ?
lim x¸?K gÝxÞ = ?K.
5
4
. Since the coefficient of x 4 is ? 34 < 0, lim x¸+K gÝxÞ = ?K and
4. The graph of a polynomial PÝxÞ = ax 3 + bx 2 + cx + d is given below. (1) Determine if the constant a
is positive or negative; and (2) find all zeros of PÝxÞ.
4
2
-3
-2
-1
0
1
x
2
3
-2
-4
y=P(x)
(1) a < 0.
(2) zeros: x = ?2, x = ?1, and x = 1.
5. Find all zeros of the polynomial function.
(a) fÝxÞ = x 5 + x 3 ? 6x
x 5 + x 3 ? 6x = xÝx 4 + x 2 ? 6Þ = xÝx 2 + 3ÞÝx 2 ? 2Þ = 0 if and only if x = 0, x 2 + 3 = 0 or x 2 ? 2 = 0.
zeros: x = 0, x = ± 2 .
(b) gÝxÞ = x 3 ? 4x 2 ? 2x + 8
x 3 ? 4x 2 ? 2x + 8 = x 2 Ýx ? 4Þ ? 2Ýx ? 4Þ = Ýx ? 4ÞÝx 2 ? 2Þ = 0 if and only if x ? 4 = 0, or x 2 ? 2 = 0.
zeros: x = 4, and x = ± 2 .
6. Find a polynomial function that has zeros: ?2, ? 1, 0, 3, 4.
PÝxÞ = Ýx + 2ÞÝx + 1ÞxÝx ? 3ÞÝx ? 4Þ.
7. An open box is to be made from a square piece of material, 36 centimeters on a side, by cutting
equal squares with a size x from the corners and turning up the sides.
(a) Write the volume VÝxÞ of the box in x.
The sizes of the box is: l = w = 36 ? 2x and h = x. So, VÝxÞ = xÝ36 ? 2xÞ 2 = 4xÝ18 ? xÞ 2 .
(b) Find the domain of VÝxÞ.
The domain of VÝxÞ: 0 < x < 18 (18 ? x > 0)
(c) Evaluate the volume of the box when x = 4 centimeters.
VÝ4Þ = 16Ý14Þ 2 = 3136 cm 3 .
(d) Estimate x at which the volume V is maximized.
3500
3000
2500
2000
1500
1000
500
0
2
4
6
8
10
x
12
14
16
18
y=V(x)
From the graph of y = VÝxÞ, x u 6 cm.
20
Related documents