Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Solutions for Review Problems for the Calculus I/Precalculus Placement Test - Fall, 2000 I. Basic Algebra Skills - 4. Polynomials Polynomial Equations: 1. Determine if x = ?2 is a solution of the equation Ýx ? 1ÞÝx 2 + 4ÞÝ2x ? 1ÞÝx + 3Þ = 0. Since x + 2 is not a factor of the left-hand side of the equation, x = ?2 is not a solution. 2. Solve the equation Ý3x + 4ÞÝx 2 ? x ? 1ÞÝ2x 2 + 3x ? 1Þ = 0. Ý3x + 4ÞÝx 2 ? x ? 1ÞÝ2x 2 + 3x ? 1Þ = 0 if and only if 3x + 4 = 0, x 2 ? x ? 1 = 0, or 2x 2 + 3x ? 1 = 0. 3x + 4 = 0, x = ? 43 ; x 2 ? x ? 1 = 0, x = 2x 2 + 3x ? 1 = 0, x Solutions: x = ? 43 , ?Ý?1Þ± Ý?1Þ 2 ?4Ý1ÞÝ?1Þ = 1±2 5 2 3± 3 2 ?4Ý2ÞÝ?1Þ = = 3± 417 . 2Ý2Þ 1+ 5 1? 5 , 3+ 417 , 3? 417 . 2 2 ; 3. Solve each equation by factoring. (a) 81x 6 ? 64 = 0 81x 6 ? 64 = ÝÝ9x 3 Þ 2 ? 8 2 Þ = Ý9x 3 ? 8ÞÝ9x 3 + 8Þ = 0 9x 3 ? 8 = 0, x 3 = 89 , x = 3 89 = 32 ; 9 9x 3 + 8 = 0, x 3 = ? 89 , x = Solutions: x = 2 39 3 ? 89 = ? 32 . , x = ? 32 . 9 9 (b) x 4 + 2x 3 ? 8x ? 16 = 0 x 4 + 2x 3 ? 8x ? 16 = x 3 Ýx + 2Þ ? 8Ýx + 2Þ = Ýx + 2ÞÝx 3 ? 8Þ x + 2 = 0, x = ?2; x 3 ? 8 = 0, x = 3 8 = 2. Solutions: x = ?2, x = 2. (c) x 4 + 5x 2 ? 36 = 0 x 4 + 5x 2 ? 36 = Ýx 2 + 9ÞÝx 2 ? 4Þ = Ýx 2 + 9ÞÝx ? 2ÞÝx + 2Þ x 2 + 9 ® 0, no solution from this equation. x ? 2 = 0, x = 2; x + 2 = 0, x = ?2. Solutions: x = 2, x = ?2. Polynomial Functions and Graphs: 1. Based on the graph of y = x 3 , sketch the graph of the function gÝxÞ = Ýx + 1Þ 3 ? 2 without using calculator. 200 150 50 -4 0 -2 2 x 4 -50 -100 – y=x 3 , -. y=(x+1) 3 ? 2 2. Based on the graph of y = x 4 , sketch the graph of the function gÝxÞ = ?Ýx ? 2Þ 4 + 1 without using calculator. 4 2 -2 -1 1 2 3 4 -2 -4 - y=x 4 , -. y=-(x-2) 4 ? 1 3. Determine the right-hand and left-hand behavior of the graph of the polynomial function without sketching the graph. (a) fÝxÞ = 2x 5 ? 5x + 7. 5 Since the coefficient of x 5 is 2 > 0, lim x¸+K fÝxÞ = +K and lim x¸?K fÝxÞ = ?K. (b) gÝxÞ = ? 14 Ý3x 4 ? 2x + 5Þ gÝxÞ = ? 34 x 4 + 12 x ? lim x¸?K gÝxÞ = ?K. 5 4 . Since the coefficient of x 4 is ? 34 < 0, lim x¸+K gÝxÞ = ?K and 4. The graph of a polynomial PÝxÞ = ax 3 + bx 2 + cx + d is given below. (1) Determine if the constant a is positive or negative; and (2) find all zeros of PÝxÞ. 4 2 -3 -2 -1 0 1 x 2 3 -2 -4 y=P(x) (1) a < 0. (2) zeros: x = ?2, x = ?1, and x = 1. 5. Find all zeros of the polynomial function. (a) fÝxÞ = x 5 + x 3 ? 6x x 5 + x 3 ? 6x = xÝx 4 + x 2 ? 6Þ = xÝx 2 + 3ÞÝx 2 ? 2Þ = 0 if and only if x = 0, x 2 + 3 = 0 or x 2 ? 2 = 0. zeros: x = 0, x = ± 2 . (b) gÝxÞ = x 3 ? 4x 2 ? 2x + 8 x 3 ? 4x 2 ? 2x + 8 = x 2 Ýx ? 4Þ ? 2Ýx ? 4Þ = Ýx ? 4ÞÝx 2 ? 2Þ = 0 if and only if x ? 4 = 0, or x 2 ? 2 = 0. zeros: x = 4, and x = ± 2 . 6. Find a polynomial function that has zeros: ?2, ? 1, 0, 3, 4. PÝxÞ = Ýx + 2ÞÝx + 1ÞxÝx ? 3ÞÝx ? 4Þ. 7. An open box is to be made from a square piece of material, 36 centimeters on a side, by cutting equal squares with a size x from the corners and turning up the sides. (a) Write the volume VÝxÞ of the box in x. The sizes of the box is: l = w = 36 ? 2x and h = x. So, VÝxÞ = xÝ36 ? 2xÞ 2 = 4xÝ18 ? xÞ 2 . (b) Find the domain of VÝxÞ. The domain of VÝxÞ: 0 < x < 18 (18 ? x > 0) (c) Evaluate the volume of the box when x = 4 centimeters. VÝ4Þ = 16Ý14Þ 2 = 3136 cm 3 . (d) Estimate x at which the volume V is maximized. 3500 3000 2500 2000 1500 1000 500 0 2 4 6 8 10 x 12 14 16 18 y=V(x) From the graph of y = VÝxÞ, x u 6 cm. 20