Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Name _________________________ Period _____ Calculus 2 Chapter 7 Test Practice 1) Identify the integration method you would use for each of the following problems. Do NOT integrate! 1 3x + 4 a. b. c. dx dx 64 − x 2 dx 2 2 x + 8x + 25 x + 2x −15 ∫ ________________ € d. ∫x 2 cos(x)dx ________________ ________________ € e. ∫ cos (x)sin (x)dx x→0 € sin(3x) 4x 4 3 ________________ € ________________ € € 2) Find the limits using L’Hospital’s Rule, when necessary. a. lim ∫ ∫ f. ∫ 5x 25 − x 2 dx ________________ € ________________ sin −1 (2x) b. lim x→0 x ________________ € c. lim( x x ) x→0 ________________ € % 2 ( 3x d. lim '1 − * x → +∞ & x) ________________ € ( e. lim x e x→∞ € 1 x ) −1 ________________ 3) Integrate each indefinite integral: a. x ln(x)dx ∫ ________________ € b. ∫ x e dx 2 x ________________ € c. ∫x 2 ∫x 3 ∫x 5 4 − x 3 dx ________________ € d. 4 − x 2 dx ________________ € e. 4 x 2 −16 dx ________________ € f. ∫e 2x cos(3x)dx ________________ € g. ∫ 5cos (x)sin (x)dx 8 3 ________________ € h. ∫ 6sec (2x)tan (2x)dx 4 3 ________________ € i. 4 ∫ (x − 3)(x +1) 2 dx ________________ € Name _________________________ Period _____ Calculus 2 Chapter 7 Test Practice 1) Identify the integration method you would use for each of the following problems. Do NOT integrate! 1 3x + 4 a. b. c. dx dx 64 − x 2 dx 2 2 x + 8x + 25 x + 2x −15 ∫ tan-1(x) € d. ∫x ∫ ∫ 2 partial fractions € cos(x)dx e. integration by parts € ∫ cos (x)sin (x)dx 4 3 € f. trigonometric integration 2 ∫ 5x 25 − x 2 dx u-substitution___ € € 2) Find the limits using L’Hospital’s Rule, when necessary. sin(3x) 3cos(3x) 3 a. lim = lim = x→0 x→0 4x 4 4 sin −1 (2x) b. lim = lim x→0 x→0 x trig substitution__ (x = 8sin(θ)) € sin(3x) 3 = x→0 4x 4 lim 2 2 1 − 4 x 2 = lim = =2 2 x → 0 1 1 1− 4x sin −1 (2x) =2 lim € x→0 x € c. lim( x x ) x→0 $ 1 ' $ 1 ' $ x 2 '€ $ ln x ' x x & ) & ) = lim = lim& − ) = lim( −x ) = 0 lny= lim( x ln x ) = lim& −1 ) = lim x→0 x → 0% x ( x → 0&% −x −2 )( x → 0&% − 1 2 )( x → 0% x ( x → 0 x 0 lim( x x ) = 1 lny=0 → y = e = 1 € € x→0 € € € € % 2 ( 3x d. lim '1 − * x → +∞ & x) % x − 2( % x ( ln' * ' *⋅ (2x −2 ) % 2( & x ) & x − 2) lny = lim 3x ln'1 − * = 3 lim = 3 lim = 1 −1 2 x → +∞ x → +∞ x → +∞ & x) x x 3 −2x −2x = 3 lim 2 = 3 lim = 3⋅ −2 = −6 x → +∞ x ( x − 2) x → +∞ ( x − 2) -6 € lny= -6 → y = e€ ≈ 0.00248 € € € e −1) e ⋅ −x ) e ) ( ( ( e. lim x (e −1) = lim = lim = lim = lim €e 1 −x 1 x 1 1 1 −2 x x x x→∞ x→∞ 1 x −2 x→∞ x→∞ % 2 ( 3x -6 lim '1 − * = e ≈ 0.00248 x → +∞ & x) x→∞ 1 x = e0 = 1 ( lim x e x→∞ € € € € € 1 x ) −1 = 1 3) Integrate each indefinite integral: x 2 ln x x x 2 ln x x 2 a. x ln(x)dx = − dx = − +C 2 2 2 4 2 x u = ln x v= 2 1 € du = dx dv = xdx x ∫ € b. ∫ 2 x 2 x x € x 2 4 − x 3 dx = − 1 3 ∫ u = 4 − x 3, du = −3x 2 dx € 1 − du = x 2 dx 3 d. € ∫ ∫x 3 2 x v = ex dv = e x dx € € € ∫ x e dx = x e − ∫ 2xe dx = x e − [2xe − ∫ 2e dx] = x e u = x2 du = 2xdx c. x 2 ln x x 2 − +C 2 4 x x u = 2x du = 2dx 2 x v = ex dv = e x dx € 3& 2# 3& 2# udu = − %u 2 ( + C = − %(4 − x 3 ) 2 ( + C 9$ ' 9$ ' € € € 4 − x 2 dx x = 2sin(θ ),dx = 2cos(θ )dθ ∫ 8sin (θ ) 4 − 4 sin (θ )2cos(θ )dθ =16 ∫ sin (θ )cos(θ ) 4 cos (θ )dθ = 32 ∫ sin (θ )cos (θ )dθ = 32 ∫ [1 − cos (θ )]cos (θ )sin(θ )dθ € $ cos (θ ) cos (θ ) ' + = 32 ∫ [cos (θ ) − cos (θ )]sin(θ )dθ = 32 & − )+C € 3 5 ( % = 3 2 3 € 3 2 2 2 2 3 2 € # % = 32 % %$ € € €e. ∫x 5 ( 5 4 − x 2 € 32 ) € € € 4 − x2 € ) 3 3 & 8( ( + C= (' ( 4 − x2 5 ) 5 4 − ( 4 − x2 3 ) 3 +C € x = 2sec(θ ),dx = 2tan(θ )sec(θ )dθ ∫ 32sec (θ ) 4(4 sec (θ )) −16⋅ 2sec(θ )tan(θ )dθ = ∫ 64 sec (θ ) 16(sec (θ ) −1)⋅ tan(θ )dθ = 256 ∫ sec (θ ) tan (θ )⋅ tan(θ )dθ = 256 ∫ sec (θ )tan (θ )dθ € = 256 ∫ (1+ tan (θ )) tan (θ )sec (θ )dθ = 256 ∫ (1+ 2tan (θ ) + tan (θ )) tan (θ )sec (θ )dθ € " u 2u u % + ' = 256 ∫ (tan (θ ) + 2tan (θ ) +€tan (θ )) sec (θ )dθ = 256 ∫ ( u + 2u + u ) du = 256$ + 5 7& #3 5 2 6 2 2 € ( − 5 6 € 5 4 4 x 2 −16 dx = € − 2xe x + 2e x + C = x 2e x − 2xe x + 2e x + C 6 2 2 2 2 2 2 4 2 2 3 2 4 6 2 2 4 6 ## 2 € &3 # x 2 − 4 &5 # x 2 − 4 &7 & x − 4 % ( 2 % % 2 (' 2 (' %$ 2 (' ( # tan 3 θ 2tan 5 θ tan 7 θ & $ $ % + + + + = 256% ( = 256% € ( 5 7 ' 3 5 € 7 $ 3 % ( $ ' 5 7 # % = 256% % $ ( x2 − 4 24 3 ) +( x2 − 4 80 5 ) +( 7& 3 5 7& # x 2 − 4 ( % 32( x 2 − 4 ) 2 16( x 2 − 4 ) 2 2( x 2 − 4 ) 2 ( + + = (+C 896 (( %% 3 5 7 ( ' ' $ ) e 2x 3 2x e 2x 3 $ € sin(3x) − = + − e sin(3x)dx cos(3x) & ∫ 2 2 2 2% e 2x e 2x u = cos(3x) v= u = sin(3x) v= 2 2 2x 2x du = −3sin(3x)dx dv = e dx du = 3cos(3x)dx dv = e € € € € € dx 2x 2x e 3 e 9 So, ∫ e 2x cos(3x)dx = cos(3x) + sin(3x) − ∫ e 2x cos(3x)dx , 2 4 2 4 2x 2x 13 € e + 3 sin(3x) e , e 2x cos(3x)dx = cos(3x) ∫ 4 2 4 2 2 3 2x 2x € = cos(3x)e € + sin(3x)e 2x + C, ∫ e cos(3x)dx 13 26 € € € € € e 2x – 2 g. ∫ 5cos (x)sin (x)dx = 5 ∫ cos (x)[1 − cos (x)] sin(x)dx = 5 ∫ (cos (x) − cos (x)) sin(x)dx € −cos (x) −cos (x) € € = 5 ∫ cos (x)sin(x)dx − 5 ∫ cos (x)sin(x)dx = 5 −5 +C 9 11 8 € € 3 8 2 8 = € € h. € € ∫ 6sec (2x)tan (2x)dx = 6 ∫ sec (2x)tan (2x)sec(2x)tan(2x)dx = 6 ∫ sec (2x)(sec (2x) −1) sec(2x)tan(2x)dx = 6 ∫ (sec (2x) − sec (2x)) sec(2x)tan(2x)dx #u #u # sec (2x) 3sec (2x) & u & 3u & 1 − = 6 ∫ ( u − u€) du = 3% − ( + C = % − (+C = % (+C 4' 4 ' 2 4 2 $6 $2 $ ' 4 3 3 3 OR € € 2 2 5 4 6 3 4 6 4 3 ∫ 6sec (2x)tan (2x)dx = 6 ∫ 4 3 € sec (2x)tan 3 (2x)⋅ sec 2 (2x)dx 2 ∫ tan (2x)€ (tan (2x) +1)⋅ sec€ (2x)dx = 6 ∫ (tan€ (2x) + tan (2x))⋅ sec (2x)dx "u "u " tan (2x) 3tan (2x) % u % 3u % 1 + = 6 ∫ (u + u ) € du = 3$ + ' + C = $ + '+C = $ '+C 4& 4 & 2 4 2 #6 #2 # & =6 3 2 2 6 5 € € € 11 € 6 i. € 2x 10 9 5cos11 (x) € − 5cos (x) + C 11 9 5 € ∫ 2e 10 9 8 € € ' cos(3x)dx ) ( ∫ e 2x cos(3x)dx = cos(3x) € € 3 € f. ∫ 4 5 6 4 3 2 6 3 € 4 dx (x − 3)(x +1) 2 € € 4 A B€ C = + + (x − 3)(x +1) 2 (x − 3) (x +1) (x +1) 2 4 = A(x +1) 2 + B(x − 3)(x +1) + C(x − 3) A = 1/4, B = -1/4, C = -1 # 1 ln x − 3 ln x +1 1 1 1 & − + +C − − % 2 ( dx = 4 4 (x +1) $ 4(x − 3) 4(x +1) (x +1) ' ∫ € 4