Download ANSWERS 1. d sin(x2)=2xcos(x2). 2. First derivative: d tan3(ex) = 3

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Calculus I, Fall 08
Grinshpan
ANSWERS
1.
d
dx
sin(x2 ) = 2x cos(x2 ).
d
2. First derivative: dx
tan3 (ex ) = 3 tan2 (ex ) sec2 (ex )ex .
Second derivative using log differentiation:
d2
d sin2 (ex ) x
3 x
e
tan (e ) = 3
dx2
dx cos4 (ex )
sin2 (ex ) x
e (2ex cot(ex ) + 4ex tan(ex ) + 1) .
=3
cos4 (ex )
3. Let x = x(t) be the distance from the bottom end to the wall and
let θ = θ(t) be the angle in question. Since x = 10 cos
√θ, we have√
ẋ = −10 sin θ θ̇. When x = 2, ẋ = −1/2 and sin θ = 96/10 = 52 6.
√
Hence θ̇x=2 = 1/8 6 (rad/s).
4. Write tan3 (xy 2 + y) = x as tan(xy 2 + y) = x1/3 . Then
xy 2 + y = arctan(x1/3 )
x−2/3
1 + x2/3
1/3
(2xy + 1)y 0 + y 2 = 2/3
x + x4/3
13
2
2/3
4/3 − y
y 0 = x +x
2xy + 1
y 2 + x2yy 0 + y 0 =
1
3
5.
x3 + y 3 = 1
3x2 + 3y 2 y 0 = 0
x2 + y 2 y 0 = 0
(y 0 = −x2 /y 2 )
2x + 2y(y 0 )2 + y 2 y 00 = 0
x4
+ y 2 y 00 = 0
4
y
2 00
y y = −2x(1 + x3 /y 3 ) = −2x/y 3
2x + 2y
y 00 = −2x/y 5 .
2
√
√
6. Check that (1, 4 15) is on the curve: 14 + ( 4 15)4 = 1 + 15 = 16.
Compute the slope:
x4 + y 4 = 16
4x3 + 4y 3 y 0 = 0
y 0 = −(x/y)3
y0 √
= −15−3/4 .
4
(1,
15)
Equation of the tangent line: y = − 1513/4 (x − 1) + 151/4 .
7.
√
3
y = x x2 + 1
1
ln y = ln x + ln(x2 + 1)
3
1
1 2x
(ln y)0 = +
2
x 3 x + 1 √
1 2
1 1 2x
x
3
0
2
+
+
y =y·
=x x +1
.
x 3 x2 + 1
x 3 x2 + 1
8.
1
d
log2 x =
dx
x ln 2
d
d ln 2
ln 2
.
logx 2 =
=−
dx
dx ln x
x ln2 x
9.
d
(1/2)x = (1/2)x ln(1/2) = − ln 2 · 2−x .
dx
√
x
d 1/x
2
2 = 21/x ln 2 · (−1/x2 ) = − ln 2 2 .
dx
x
10.
d x
d
x =
(ex ln x ) = ex ln x (ln x + 1) = xx (ln x + 1).
dx
dx
11.
d
1
1/(x2 + 1)
=−
.
dx arctan x
arctan2 (x)
3
12.
e2x arcsin(−x)
x cos2 x
ln y = 2x + ln(arcsin(−x)) − ln x − 2 ln cos x
√
1/ 1 − x2 1
0
(ln y) = 2 +
− + 2 tan x
arcsin
x
x
√
2
1/ 1 − x
1
0
y =y· 2+
− + 2 tan x
arcsin x
x
√
1/ 1 − x2 1
e2x arcsin(−x)
0
2+
− + 2 tan x
y =
x cos2 x
arcsin x
x
y=
Related documents