Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Calculus I, Fall 08 Grinshpan ANSWERS 1. d dx sin(x2 ) = 2x cos(x2 ). d 2. First derivative: dx tan3 (ex ) = 3 tan2 (ex ) sec2 (ex )ex . Second derivative using log differentiation: d2 d sin2 (ex ) x 3 x e tan (e ) = 3 dx2 dx cos4 (ex ) sin2 (ex ) x e (2ex cot(ex ) + 4ex tan(ex ) + 1) . =3 cos4 (ex ) 3. Let x = x(t) be the distance from the bottom end to the wall and let θ = θ(t) be the angle in question. Since x = 10 cos √θ, we have√ ẋ = −10 sin θ θ̇. When x = 2, ẋ = −1/2 and sin θ = 96/10 = 52 6. √ Hence θ̇x=2 = 1/8 6 (rad/s). 4. Write tan3 (xy 2 + y) = x as tan(xy 2 + y) = x1/3 . Then xy 2 + y = arctan(x1/3 ) x−2/3 1 + x2/3 1/3 (2xy + 1)y 0 + y 2 = 2/3 x + x4/3 13 2 2/3 4/3 − y y 0 = x +x 2xy + 1 y 2 + x2yy 0 + y 0 = 1 3 5. x3 + y 3 = 1 3x2 + 3y 2 y 0 = 0 x2 + y 2 y 0 = 0 (y 0 = −x2 /y 2 ) 2x + 2y(y 0 )2 + y 2 y 00 = 0 x4 + y 2 y 00 = 0 4 y 2 00 y y = −2x(1 + x3 /y 3 ) = −2x/y 3 2x + 2y y 00 = −2x/y 5 . 2 √ √ 6. Check that (1, 4 15) is on the curve: 14 + ( 4 15)4 = 1 + 15 = 16. Compute the slope: x4 + y 4 = 16 4x3 + 4y 3 y 0 = 0 y 0 = −(x/y)3 y0 √ = −15−3/4 . 4 (1, 15) Equation of the tangent line: y = − 1513/4 (x − 1) + 151/4 . 7. √ 3 y = x x2 + 1 1 ln y = ln x + ln(x2 + 1) 3 1 1 2x (ln y)0 = + 2 x 3 x + 1 √ 1 2 1 1 2x x 3 0 2 + + y =y· =x x +1 . x 3 x2 + 1 x 3 x2 + 1 8. 1 d log2 x = dx x ln 2 d d ln 2 ln 2 . logx 2 = =− dx dx ln x x ln2 x 9. d (1/2)x = (1/2)x ln(1/2) = − ln 2 · 2−x . dx √ x d 1/x 2 2 = 21/x ln 2 · (−1/x2 ) = − ln 2 2 . dx x 10. d x d x = (ex ln x ) = ex ln x (ln x + 1) = xx (ln x + 1). dx dx 11. d 1 1/(x2 + 1) =− . dx arctan x arctan2 (x) 3 12. e2x arcsin(−x) x cos2 x ln y = 2x + ln(arcsin(−x)) − ln x − 2 ln cos x √ 1/ 1 − x2 1 0 (ln y) = 2 + − + 2 tan x arcsin x x √ 2 1/ 1 − x 1 0 y =y· 2+ − + 2 tan x arcsin x x √ 1/ 1 − x2 1 e2x arcsin(−x) 0 2+ − + 2 tan x y = x cos2 x arcsin x x y=