Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Course MA1S11: Michaelmas Term 2016. Tutorial 9: Sample December 6–9, 2016 Results that may be useful. Differentiation by Rule Let x be a real variable, taking values in a subset D of the real numbers, and let y, u and v dependent variables, expressible as functions of the independent variable x, that are differentiable with respect to x. Then the following results are valid:— (i) if y = c, where c is a real constant, then dy = 0; dx (ii) if y = cu, where c is a real constant, then (iii) if y = u + v then dy du =c ; dx dx dy du dv = + ; dx dx dx (iv) if y = xq , where q is a rational number, then (v) (Product Rule) if y = uv then dy = qxq−1 ; dx dv du dy =u +v ; dx dx dx du dv −u v u dy (vi) (Quotient Rule) if y = then = dx 2 dx ; v dx v (vii) (Chain Rule) if y is expressible as a differentiable function of u, where u dy dy du in turn is expressible as a differentiable function of x, then = . dx du dx Definitions and Basic Properties of Trigonometric Functions The sine function (sin) sends a real number x to the sine sin x of an angle measuring x radians. The circumference of a circle of radius one is of length 2π. Radian measure corresponds to distance along the circumference of the unit circle. Therefore four right angles equal 2π radians, and thus one right angle equals 21 π radians. 1 The cosine function (cos) satisfies the identity cos x = sin( 21 π − x) for all real numbers x. The tangent function (tan), cotangent function (cot), secant function (sec) and cosecant function (csc) are defined so that tan x = sin x , cos x cot x = cos x , sin x sec x = 1 , cos x csc x = 1 sin x for all real numbers x. These functions satisfy the following identities:— cos2 x + sin2 x = 1, 1 + tan2 x = sec2 x, cos(x + y) = cos x cos y − sin x sin y, sin(x + y) = sin x cos y + cos x sin y, sin 2x = 2 sin x cos x, cos 2x = cos2 x − sin2 x = cos2 x − 1 = 1 − 2 sin2 x. sin x sin y = cos x cos y = sin x cos y = 1 (cos(x − y) + cos(x + y)), 2 1 (cos(x + y) + cos(x − y)), 2 1 (sin(x + y) + sin(x − y)). 2 Derivatives of Trigonometric Functions The derivatives of the sine, cosine and tangent functions are as follows:— d (sin x) = cos x, dx d (cos x) = − sin x, dx d 1 (tan x) = = sec2 x. dx cos2 x Derivatives of Logarithm and Exponential Functions The exponential ex of x is defined for all real numbers x, and es+t = es et for all real numbers t. Moreover d kx (e ) = kekx dx for all real numbers k. The exponential ex of x The natural logarithm function satisfies d 1 (ln kx) = dx x (x > 0 and k > 0) for all positive real numbers k. The natural logarithm ln x of x is defined for all positive real numbers x, and satisfies ln(uv) = ln u + ln v for all positive real numbers u and v. 2 Properties of Integrals Let f and g be integrable functions on a closed bounded interval [a, b], and let c be a real number. Then Z b Z b Z b (f (x) + g(x)) dx = f (x) dx + g(x) dx a a and b Z a Z (cf (x)) dx = c a Also Z b f (x) dx. a b xq dx = a 1 (bq+1 − aq+1 ) q+1 for all rational numbers q and for all positive real numbers a and b. This identity is also valid for all real numbers a and b in the special case where q is a non-negative integer. Integrals of sine and cosine are as follows: Z s Z s 1 1 cos kx = sin ks. sin kx dx = (1 − cos ks) and k k 0 0 Also Z s ekx dx = 0 3 1 ks (e − 1). k Problem 1 Determine the derivatives of the following functions. 2 −4x3 ) (a) esin(x (b) x5 7 + 2 cos(ln x) (c) cos x5 2 + (ln x)6 Problem 2 Determine the values of the following definite integrals. Z (a) 4 (18x2 − 8x + 6) dx 2 Z 1 π 12 (b) sin 6x dx 0 Z 27 2 1 (25x 3 + 12x 3 ) dx (c) 8 It is recommended that you show your working on the Additional Work sheets attached to the tutorial sheet. 4 Additional Work ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... 5 ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... 6 ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... 7 ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... ........................................................................... 8