Download Solutions for Quiz

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 116 CALCULUS II
SOLUTION FOR QUIZ – XXXI (07/18)
July 18 (Mon), 2016
Instructor:
Yasuyuki Kachi
Line #: 81300.
[I] (2pts)
The definition of tan x is
sin x
.
cos x
tan x =
[II] (10pts)
(1)
Find the following special values:
tan 0 = 0,
(6)
tan
2π
3
√
= − 3,
(2)
tan
π
6
1
= √ ,
3
(7)
tan
3π
4
= −1,
(3)
tan
π
4
= 1,
(8)
tan
5π
6
1
= −√ ,
3
(4)
tan
π
3
=
3.
(9)
tan π = 0,
(5)
tan
π
2
= ‘undefined’,
(10)
tan 2 π
= 0.
[III] (2pts)
(a)
(2)
2
d tan x
= 1 + tan x .
dx
1
d tan x
=
dx
(b)
[IV] (2pts)
√
(1)
tan
π
2
tan
−x
−x
1
cos x
2 .
=
1
.
tan x
=
− tan x.
[V] (8pts)
(1a)
Recall
sin
x+y
=
sin x
cos
x+y
=
cos x
cos y
cos y
+
−
cos x
sin y ,
sin x
sin y .
cos x
From these, you may find
tan
x+y
sin
=
cos
=
x+y
x+y
sin x
cos x
cos y
cos y
+
−
sin x
sin y
sin y
(1b)
.
In the resulting fraction in (1a) above, you divide both the numerator and the
denominator by
cos x
cos y , and obtain
tan
(2)
x+y
=
tan x
+
tan y
1 −
tan x
tan y
Substitute y with x into the outcome of (1b) above:
tan
2x
=
tan x
+
tan x
1 −
tan x
tan x
tan x
2
1 − tan x
2
=
2
.
.
(3)
Substitute
y = −
π
4
outcome of (1b) above:
tan
[VI] (6pts)
x−
and hence
π =
4
tan
2α

1 −
2
5
24
25
=
2·
tan
4α
1
5

5
12
1 −
=
2

5
.
12
5
12
=
10
12
119
144
=
3
− 1
2

120
.
119
.
+ 1
tan α =
1
5
=
=
(2)
tan x
Let α be a real number such that
2·
(1)
tan x
tan y = − 1
1
.
5
into the
(3)
tan
4α −
π
4
!
∞
X
π =
n= 0
=
1
−
7
− 1
239
119
+ 1
=
239
119
1
119
=
[VII] (10pts)
1
119
1
.
239
=
(1) Machin’s formula is as follows:

n
−1
16

−

2n+1
5
2n + 1
4
16
−
1
5
2391
!
−
1
3
4
16
−
7
5
2397
!
1
+
9
BBP formula is as follows:

!n
∞
X
1
4

π =

16
8n + 1

4
2392n+1
4
16
−
3
5
2393
!
+
4
16
−
9
5
2399
!
− ··· .
1
5


4
16
−
5
5
2395
!
(2)
−
2
8n + 4
−
1
8n + 5
−
1
8n + 6
n= 0



2
1
1
4
−
−
−
1
4
5
6
!
1
+
16
2
1
1
4
−
−
−
9
12
13
14
!
1
+
162
2
1
1
4
−
−
−
17
20
21
22
!
1
+
163
2
1
1
4
−
−
−
25
28
29
30
!
1
+
164
2
1
1
4
−
−
−
33
36
37
38
!
+ ··· .
=
4
(2b)
The sum of the first three terms of the BBP formula is
4
1
−
2
4
−
1
5
−
!
1
6
1
+
16
+
·
1
·
162
2
1
1
−
−
−
12
13
14
!
2
1
1
4
−
−
−
17
20
21
22
!
4
9
We may rely on a calculator, and find the answer as
h
Answer
(2c)
i
:
3
. 1 4 1 5 8 7 3 ...
From calculator,
π = 3.1415926535.. .
The difference between the above answer in (2) and π is
0.000005... .
It is between 10−5 and 10−6 .
5
.
Related documents