Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 116 CALCULUS II SOLUTION FOR QUIZ – XXXI (07/18) July 18 (Mon), 2016 Instructor: Yasuyuki Kachi Line #: 81300. [I] (2pts) The definition of tan x is sin x . cos x tan x = [II] (10pts) (1) Find the following special values: tan 0 = 0, (6) tan 2π 3 √ = − 3, (2) tan π 6 1 = √ , 3 (7) tan 3π 4 = −1, (3) tan π 4 = 1, (8) tan 5π 6 1 = −√ , 3 (4) tan π 3 = 3. (9) tan π = 0, (5) tan π 2 = ‘undefined’, (10) tan 2 π = 0. [III] (2pts) (a) (2) 2 d tan x = 1 + tan x . dx 1 d tan x = dx (b) [IV] (2pts) √ (1) tan π 2 tan −x −x 1 cos x 2 . = 1 . tan x = − tan x. [V] (8pts) (1a) Recall sin x+y = sin x cos x+y = cos x cos y cos y + − cos x sin y , sin x sin y . cos x From these, you may find tan x+y sin = cos = x+y x+y sin x cos x cos y cos y + − sin x sin y sin y (1b) . In the resulting fraction in (1a) above, you divide both the numerator and the denominator by cos x cos y , and obtain tan (2) x+y = tan x + tan y 1 − tan x tan y Substitute y with x into the outcome of (1b) above: tan 2x = tan x + tan x 1 − tan x tan x tan x 2 1 − tan x 2 = 2 . . (3) Substitute y = − π 4 outcome of (1b) above: tan [VI] (6pts) x− and hence π = 4 tan 2α 1 − 2 5 24 25 = 2· tan 4α 1 5 5 12 1 − = 2 5 . 12 5 12 = 10 12 119 144 = 3 − 1 2 120 . 119 . + 1 tan α = 1 5 = = (2) tan x Let α be a real number such that 2· (1) tan x tan y = − 1 1 . 5 into the (3) tan 4α − π 4 ! ∞ X π = n= 0 = 1 − 7 − 1 239 119 + 1 = 239 119 1 119 = [VII] (10pts) 1 119 1 . 239 = (1) Machin’s formula is as follows: n −1 16 − 2n+1 5 2n + 1 4 16 − 1 5 2391 ! − 1 3 4 16 − 7 5 2397 ! 1 + 9 BBP formula is as follows: !n ∞ X 1 4 π = 16 8n + 1 4 2392n+1 4 16 − 3 5 2393 ! + 4 16 − 9 5 2399 ! − ··· . 1 5 4 16 − 5 5 2395 ! (2) − 2 8n + 4 − 1 8n + 5 − 1 8n + 6 n= 0 2 1 1 4 − − − 1 4 5 6 ! 1 + 16 2 1 1 4 − − − 9 12 13 14 ! 1 + 162 2 1 1 4 − − − 17 20 21 22 ! 1 + 163 2 1 1 4 − − − 25 28 29 30 ! 1 + 164 2 1 1 4 − − − 33 36 37 38 ! + ··· . = 4 (2b) The sum of the first three terms of the BBP formula is 4 1 − 2 4 − 1 5 − ! 1 6 1 + 16 + · 1 · 162 2 1 1 − − − 12 13 14 ! 2 1 1 4 − − − 17 20 21 22 ! 4 9 We may rely on a calculator, and find the answer as h Answer (2c) i : 3 . 1 4 1 5 8 7 3 ... From calculator, π = 3.1415926535.. . The difference between the above answer in (2) and π is 0.000005... . It is between 10−5 and 10−6 . 5 .