Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
NOTES – Number Systems & Properties Algebra II Pre AP Natural Numbers: N, “counting numbers” {1,2,3,…} Whole Numbers: W, {0,1,2,3…} Integers: Z, {…-2, -1, 0, 1, 2…} Rational: Q, any number that can be expressed in a the form , where a and b are b integers and b 0 Real Numbers: , union of Rational and Irrational Irrational: I, nonterminating, nonrepeating decimals Real Numbers Venn Diagram Q Z W I N Name all the sets of numbers to which each belongs. 1.) 0 _____________ 2.) 81 ___________ 3.) 11 _____________ 3 4.) ____________ 5.) 6.25 ___________ 6.) 1.3 _____________ 7.) 19 _____________ 8.) 8 ___________ 10.) 60 _____________ 11.) 7 ______________ 0 12.) 4 __________ 9.) 3 0 ____________ 5 Graph each of the following on a number line. 13.) all whole numbers less than 5 14.) all integers between -3 and 4 15.) all integers between -3 and 4 inclusive 16.) all natural numbers greater than -2 17.) all real numbers less than or equal to 4 18.) whole numbers greater than -3 19.) integers between -6 and -2 inclusive 20.) natural numbers less than 1 True or False: If false, give an example of a number that shows the statement is false. 21.) Every real number is irrational. ________ 22.) Every integer is a rational number. ______ 23.) Every rational number is an integer. _____ 24.) Every natural number is an integer. _____ 25.) Every irrational number is a real number. ______ 26.) Every real number is either a rational or an irrational number. _____ Properties of Real Numbers Property Addition Multiplication Commutative ab ba ab ba Associative (a b) c a (b c) (ab)c a(bc) a0 a a 1 a 1 a a Identity Inverse 0a a a a 0; a a 0 Distributive of Multiplication over Addition 1 1 a 1; a 1 a a a(b c) ab ac; (b c)a ba ca a 0 0 0 a0 Name the property illustrated by each equation below. Multiplicative Property of Zero 1.) 5x 4 y 3x 5x 3x 4 y 6.) 7 x 9 x 8 7 x 9 x 8 2.) 5 3x y 5 3x 1y 7.) 7n 2n 7 2 n 3.) 2 x y 2 xy 8.) 3x 2 y 3 2 x y 4.) 6 (6) y 0 y 9.) 5.) 5 x y 5x 5 y 10.) 4n 0 4n 1 4 y 1y 4 Write the additive inverse and the multiplicative inverse for each of the following. 3 11.) _____ _____ 12.) 0.6 _____ _____ 13.) 0 _____ _____ 14.) 1 _____ _____ 7 Tell whether the statement is always, sometimes, or never true for real numbers a, b, and c. Explain. 15.) a b c a b c __________________________________________________________ 16.) a b c a b c ___________________________________________________________ 17.) a b c a b c ___________________________________________________________ 18.) a b c a b c ___________________________________________________________ 19.) a b c ab ac ___________________________________________________________ 20.) a b c ab ac ___________________________________________________________ Solve each equation 1.) 2 3 m m 4 3 5 2.) 4.) 5 2 x 3 2 x 7 3x 3 2 4 1 w w 7 9 9 7 3.) 2 1 3 1 k k 5 6 10 3 5.) 2 4 3x 7 6 x 1 6.) Solve the equation ax b cx d for x in terms of a, b, c, and d. Under what conditions is there no solution? Under what conditions are all real numbers solutions? Solve each equation and state restrictions if needed 7.) x y 2 z; solve for y 8.) I prt; solve for t 9.) F G Mm ; solve for M r2 Solve for x and state restrictions if needed 10.) ax bx 2c 11.) x cx d 13.) 2dx e x 14.) 16.) Show that 1 a b; when x 0 x 12.) ax b x 15.) b cx dx a c a b for nonzero real numbers a, b, c, and d. Justify each step in your reasoning. b d c d a c and be two distinct rational numbers. Find the rational number that lies exactly halfway b d a c between and on a number line b d 17.) Let