Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Differential Calculus 201-NYA-05 Vincent Carrier Limits at Infinity A limit at infinity is a limit of the form lim f (x) or x→−∞ lim f (x). x→∞ The result of a limit at infinity describes the way f behaves when x assumes arbitrarily large negative and positive values. It is fundamental to understand that lim f (x) = 0 whenever it is of the form 1 = 0 x→±∞ x 4 = 0 x→±∞ x5 x→±∞ constant ±∞ For example, lim lim 6 lim √ = 0. 3 x→±∞ x Limits at infinity often give rise to limits of the indeterminate forms h∞i ±∞ [∞ − ∞] and = . ∞ ±∞ Examples: [∞ − ∞] a) lim (x2 − x3 ) x→∞ lim (x2 − x3 ) = x→∞ lim x3 (1/x − 1) x→∞ = −∞ b) lim (2x3 + 4x2 − 3x + 1) x→−∞ lim (2x3 + 4x2 − 3x + 1) = x→−∞ lim x3 (2 + 4/x − 3/x2 + 1/x3 ) x→−∞ = −∞ Examples: [∞/∞] 5x2 − 4x + 3 x→∞ 8x2 − 7x + 9 a) lim 5x2 − 4x + 3 = x→∞ 8x2 − 7x + 9 lim x2 (5 − 4/x + 3/x2 ) x→∞ x2 (8 − 7/x + 9/x2 ) lim = 5 − 4/x + 3/x2 x→∞ 8 − 7/x + 9/x2 = 5−0+0 8−0+0 = 5 8 lim 4x3 + 5x − 9 x→−∞ 7x4 − 9x2 − 6 b) lim 4x3 + 5x − 9 = x→−∞ 7x4 − 9x2 − 6 lim = x3 (4 + 5/x2 − 9/x3 ) x→−∞ x4 (7 − 9/x2 − 6/x4 ) lim 4 + 5/x2 − 9/x3 x→−∞ x(7 − 9/x2 − 6/x4 ) lim = 0 5x3 − 9 x→−∞ 8x2 + 3x − 7 c) lim 5x3 − 9 = x→−∞ 8x2 + 3x − 7 lim = x3 (5 − 9/x3 ) x→−∞ x2 (8 + 3/x − 7/x2 ) lim x(5 − 9/x3 ) x→−∞ 8 + 3/x − 7/x2 lim = −∞ In the next two examples, it will be made use of the fact that √ ( x2 = |x| = x if x ≥ 0 −x if x < 0. 6x + 5 d) lim √ x→∞ 9x2 + 4 6x + 5 lim √ = x→∞ 9x2 + 4 x(6 + 5/x) lim p x→∞ x2 (9 + 4/x2 ) = x(6 + 5/x) lim √ p x→∞ x2 9 + 4/x2 = x(6 + 5/x) p x→∞ x 9 + 4/x2 = 6 + 5/x lim p x→∞ 9 + 4/x2 lim 6+0 = √ 9+0 = 2 √ 4x2 + 3 e) lim x→−∞ 8x + 7 √ lim x→−∞ 4x2 + 3 = 8x + 7 p x2 (4 + 3/x2 ) lim x→−∞ x(8 + 7/x) √ p x2 4 + 3/x2 = lim x→−∞ x(8 + 7/x) p −x 4 + 3/x2 = lim x→−∞ x(8 + 7/x) p 4 + 3/x2 = − lim x→−∞ 8 + 7/x √ 4+0 = − 8+0 = − 1 4 Examples: [∞ − ∞] and [∞/∞] √ 2 a) lim x + 8x − 5 − x x→∞ √ x2 + 8x − 5 − x = lim x→∞ lim √ x→∞ x2 √x2 + 8x − 5 + x + 8x − 5 − x √ x2 + 8x − 5 + x = (x2 + 8x − 5) − x2 lim p x→∞ x2 (1 + 8/x − 5/x2 ) + x = 8x − 5 lim √ p x→∞ x2 1 + 8/x − 5/x2 + x = = lim x→∞ x(8 − 5/x) p x 1 + 8/x − 5/x2 + x 8 − 5/x lim p x→∞ 1 + 8/x − 5/x2 + 1 = √ 8−0 1+0−0+1 = 4 b) lim x→−∞ 3x + lim x→−∞ √ 9x2 3x + − 4x √ 9x2 − 4x = lim x→−∞ 3x − √9x2 − 4x √ √ 3x + 9x2 − 4x 3x − 9x2 − 4x = 9x2 − (9x2 − 4x) √ x→−∞ 3x − 9x2 − 4x = 4x √ p x→−∞ 3x − x2 9 − 4/x = 4x p x→−∞ 3x − (−x) 9 − 4/x = 4 p x→−∞ 3 + 9 − 4/x = 4 √ x→−∞ 3 + 9−0 = 2 3 lim lim lim lim lim