Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
U0@Mac: PRECALCULUS MATHEMATICS DIAGNOSTIC TEST - 2 hours 1. Simplify (a) 5/2 (b) 5/6 (c) 5/12 (d) 16/15 2 3 2. Add 23 + (a) 5/24 (b) 5/12 (c) 7/11 (d) 31/24 5 8 · 5 8 3. Express x13 + (a) 0 2 2 y+2x (b) y +x x3 y 2 (c) x−2 3 y2 4 (d) x3 +xy+x 2 y2 4. Simplify (a) 2x2 y 3 (b) 2xy 2 (c) 8x3 y 6 (d) 4x y3 1 xy 2 x2 y 2 as a single fraction : (2x2 y 3 )3 (xy)3 2 5. Simplify (a2 b) 3 · a1/3 + ¡ a ¢− 1 b 3 (a) b2/3 (b) ab (c) ab 1/3 (d) ab 2/3 6. Solve for x in x2 + 7x + 12 = 0 (a) -4, -3 (b) 4, 3 (c) 7, 2 (d) -12, 2 1 7. Solve for x in (a) x = 5/2 (b) x = 2 (c) x = 5 (d) x = 1 2 x−3 = 3 x−2 8. Solve for y in 4y 2 − 1 = 9y − 3 (a) y = 4 and 1/2 (b) y = 3 and 1/9 (c) y = 1 and 1/4 (d) y = 2 and 1/4 9. Factor x2 − 2x − 3 (a) (x − 3)(x + 1) (b) (x + 2)(x − 1) (c) (x − 2)(x + 1) (d) (x − 3)(x − 1) 10. What is the equation of the line with slope (a) y = 32 x + 3 1 3 passing through the point (x, y) = (3, 2)? (b) y = 23 x − 2 (c) y = 13 x − 1 (d) y = 31 x + 1 11. At what point do the two lines x − y = 2 and y = 2x + 3 intersect? (a) (1, 5) (b) (−5, −7) (c) (2, 9) (d) (5, 7) 12. Consider the line y = x − 2 and the parabola y = x2 . Do they intersect? If yes, where? (a) Yes, at (2, 1) (b) No (c) Yes, at (1, -1) (d) Yes, at (-1, -3) 2 13. Convert the angles 60o and 210o to radians (a) π/4 and 5π/4 (b) π/6 and 7π/6 (c) π/3 and 7π/6 (d) π/4 and 7π/4 14. An equivalent expression for cos θ is (a) sin θ tan θ (b) sin(tan θ) sin θ (c) tan θ θ (d) tan sin θ 15. What are√the values √ of cos 0 , cos π/6 , cos π/4 , cos π/3 , cos π/2? (a) 0 , 1/2 , 2/2 , 3/2 , 1 √ √ (b) 1 , 3/2 , 2/2, , 1/2 , 0 (c) 1 , − 3/2√, − 1, √ , − 1/2 , 0 (d) 0 , 1/4 , 2/2 , 3/4 , 1 16. What √ values of sin π , sin 5π/6 , sin 3π/4 , sin 2π/3 , sin π/2? √ are the (a) 1 , 3/2√, 2/2, , 1/2 , 0√ (b) 1 , − 3/ √2 , − 1, √ , − 1/ 2 , 0 (c) 0 , 1/4 , √2/2 , √3/4 , 1 (d) 0 , 1/2 , 2/2 , 3/2 , 1 17. Simplify e3x+2 · e2x−4 (a) e5x−2 (b) e3x+2 + e2x−4 2 (c) e6x −8 (d) ex−2 18. If y = f (x) = x2 , what is the inverse function x = f −1 (y)? (a) x = y 2 (b) x = y −2 √ √ (c) x = y or − y (d) x = y −1 19. If log a = 3 and log b = 4, what is log(a2 b)? (a) log 36 (b) 13 (c) log 7 (d) 10 3 20. If y = f (x) = ex , what is the inverse function x = f −1 (y)? (a) x = e−1 (b) x = ln y (c) x = y −1 (d) x = 1/ey 21. If y = f (x) = sin x, what is the inverse function x = f −1 (y)? (a) x = sin(y −1 ) (b) x = arcsin y = sin−1 y (c) x = sin y −1 (d) x = 1/ sin y 22. What is the value of cos−1 (1/2)? (a) π/6 (b) π/3 (c) 30o (d) 45o 23. What is the value of arctan(1)? (a) 0 (b) π/6 (c) π/4 (d) 30o 24. If x = 3 and y = 4, calculate yx − y x : (a) -52 (b) 0 (c) 11 (d) -36 25. Simplify (a) 1/2 (b) 2n−1 (c) 2 (d) 1/2n−1 2n 2(2n−2 ) 4 26. Solve for x if log3 x = 2 (a) 2/ log 3 (b) 104/3 (c) 9 (d) 6/ log 3 27. Use polynomial long division to calculate (a) x2 − 2x + 2 (b) x2 + x − 2 (c) x2 + 2x − 2 (d) x2 − x/2 + 2 x3 −2x2 −5x+6 x−3 28. If f (x) = x2 + 2x − 3, determine f (4): (a) 0 (b) 9 (c) 1/21 (d) 21 29. Simplify 3 log4 2 + 2 log4 3 (a) log4 72 (b) log4 12 (c) log4 1 (d) 5 log4 5 30. Expand (a + b)3 (a) 3a + 3b (b) a2 + abx + b2 (c) a3 + 3a2 b + 3ab2 + b3 (d) a3 + b3 31. What are the circumference and area of a circle of radius R? (a) 4πR , 43 πR3 (b) 2πR , πR2 (c) 4πR2 , πR2 (d) 2πR , 43 πR3 32. If 3y = x, then y can be expressed as: (a) y = x/3 (b) y = x/ log3 (c) y = logx 3 (d) y = log3 x 5 33. What is the area of a triangle with base 2 and height 3? (a) 6 (b) 2 (c) 3 (d) 12 34. Solve the following pair of equations for x and y: x + 2y = 4 and 4x − 5y = 3 (a) x = 1 , y = 2 (b) x = −1 , y = 1 (c) x = 2 , y = 1 (d) x = −2 , y = −1 35. Find an equation for the line passing through the point (2, 1) and perpendicular to the line 2x + y = 5 : (a) 2x − 2y = 0 (b) x + 2y = 0 (c) x − 2y = 0 (d) 2x − y = 0 36. √ If f (x) = (a) 1 − x2 √ (b) 1 − x (c) 1 − x (d) 1 + x2 √ x and g(x) = 1 − x2 , find f (g(x)) 37. The lines 2x + 3y = 5 and 6x − 4y = 14 are: (a) parallel (b) perpendicular (c) neither (d) both 38. During the first and second year a business had earnings of $150,000 and $184,000 respectively. If the growth in sales follows a linear pattern, what will be the earnings during the third year? (a) $196,000 (b) $334,000 (c) $234,000 (d) $218,000 6 39. The curve described by the equation x2 y 4 + 2x4 y − 2 = 0 is symmetric about (a) both the x-axis and the y-axis (b) the y-axis (c) the x-axis (d) neither the x-axis nor the y-axis 40. Solve the equation ln(x − 3) − ln x = 1 for x (a) x = e1/3 (b) ln 3 = 1 (c) x = ln 3−1 3 (d) x = 1−e 41. Find the values of x which satisfy |x + 4| = 2 (a) x = 2 or x = −4 (b) x = −2 or x = −6 (c) x = −2 or x = −4 (d) x = 2 or x = −6 42. Express as a single fraction and simplify −3a (a) x(x+a) (b) (c) (d) 3h x2 +a −3 xa+x2 a x(x+a) 43. Solve x2 + 3 ≤ 7 (a) x ≤ 2; x ≥ −2 (b) x ≤ −4; x ≥ 4 (c) x ≤ 4; x ≥ −4 (d) x ≥ 2; x ≤ −2 44. The graph of x + y − 3 = 0 is a (a) plane (b) circle (c) parabola (d) line 7 3 −3 x+a x a 45. The graph of x2 + y 2 = 4 is a (a) circle of radius 2 (b) circle of radius 4 (c) ellipse of eccentricity 1 (d) parabola 46. The graph of x2 + y = 4 is a (a) circle centered at origin (b) parabola opening upward (c) ellipse (d) parabola opening downward 47. The absolute value of -8 is (a) 1/8 (b) 8 (c) -8 (d) -1/8 48. Simplify −3/4 ÷ 5/6 (a) -15/24 (b) 5/8 (c) -9/10 (d) 10/9 49. For an isosceles triangle of base 2b, height a and hypotenuse c, the Pythagorean Theorem states that (a) c2 = a2 + b2 (b) a2 = c2 + b2 (c) b2 = a2 + c2 (d) c2 = −a2 − b2 50. If the interior angles in a triangle are labelled A, B, and C, then (a) A + B + C ≤ 180o (b) A + B + C = 180o (c) A + B + C < 180o (d) A + B + C = 90o 8