Download Example 1 Find the points at which the function is not continuous

Document related concepts
no text concepts found
Transcript
CP Calculus
Block 19
HW-Review p88,
84;90;96;108;114;
120;126;
7/8/2017
Mrs. Liu's PreCalc Day19
1
CP Calculus
Block 19
HW p98,x3’s
3-48
7/8/2017
Mrs. Liu's PreCalc Day19
2
Ch 2.4 Continuity and
One-sided Limit
7/8/2017
Mrs. Liu's PreCalc Day19
3
Do Now:
x 2
,
x

0
 x  1
f( x )  
1

,
x

0
2
 x
7/8/2017
Mrs. Liu's PreCalc Day19
4
x 2
1
1
x 1
x 1
2
7/8/2017
Mrs. Liu's PreCalc Day19
1
2
x
5
2
0
lim f ( x )
x 
7/8/2017
Mrs. Liu's PreCalc Day19
6
2
1
lim f ( x )
x 
7/8/2017
Mrs. Liu's PreCalc Day19
7
lim f ( x )
x 0
2
7/8/2017
Mrs. Liu's PreCalc Day19

8
lim f ( x )
x 0
7/8/2017
2
Mrs. Liu's PreCalc Day19
2
9
Objective 1:
Determine the
continuity of the
functions
7/8/2017
Mrs. Liu's PreCalc Day19
10
Definition A:
Continuity at an
interior point
lim f(x) = f(c)
x c
7/8/2017
Mrs. Liu's PreCalc Day19
11
Definition B:
Continuity on
closed interval [a,b],
left endpoint a or
right endpoint b
7/8/2017
Mrs. Liu's PreCalc Day19
12
lim+ f(x) = f(a)
x a
lim- f(x) = f(b)
x b
7/8/2017
Mrs. Liu's PreCalc Day19
13
Definition C: A
function is
continuous if it is
continuous at each
point of its domain
7/8/2017
Mrs. Liu's PreCalc Day19
14
The Continuity Test
The function y=f(x) is
continuous at x=c if
and only if all of the
following are true:
7/8/2017
Mrs. Liu's PreCalc Day19
15
i) f(c) exitsts
ii )limf(x) exists
x c
iii) lim f(x) = f(c)
7/8/2017
x c
Mrs. Liu's PreCalc Day19
16
Existence of Limit
lim f ( x )  lim f ( x )
x c
x c
L
7/8/2017
Mrs. Liu's PreCalc Day19
17
Properties of
Continuity I
Scalar Multiple:
bf(x)
7/8/2017
Mrs. Liu's PreCalc Day19
18
Properties of
Continuity ii
Sum or difference
f + g, or f - g
7/8/2017
Mrs. Liu's PreCalc Day19
19
Properties of
Continuity iii
Product
f(x)g(x)
7/8/2017
Mrs. Liu's PreCalc Day19
20
Properties of
Continuity iv
Quotient
f(x)/g(x) g( x )  0
7/8/2017
Mrs. Liu's PreCalc Day19
21
Continuity of
Composite
Functions
f(g(x)) or g(f(x))
7/8/2017
Mrs. Liu's PreCalc Day19
22
Theorem: If f is
continuous at c and g
is continuous at f©,
then the composite
gof is continuous at c.
7/8/2017
Mrs. Liu's PreCalc Day19
23
Example 0 Given f(x)
1, x  0


2
f( x )   1  x , 0  x 1
 x  1, x  1

7/8/2017
Mrs. Liu's PreCalc Day19
24
1, x  0


f( x )   1  x2 , 0  x  1
 x  1, x  1

7/8/2017
a) Determine a
complete graph of
f(x)
Mrs. Liu's PreCalc Day19
25

b) Is f(x) continuous?

Explain.
f( x )  


Yes. At all points
7/8/2017
Mrs. Liu's PreCalc Day19
1, x  0
1  x2 , 0  x  1
x  1, x  1
26
Example 1 Find the
points at which the
function is notx 
continuous
1
f( x ) 
7/8/2017
2
(x 2)
Mrs. Liu's PreCalc Day19
2
27
Example 2 Find the
points at which the
function is not
x


2,5
continuous
x 3
f( x )  2
x  3x  10
7/8/2017
Mrs. Liu's PreCalc Day19
28
Example 3 Find the
points at which the
1
function is not
f
(
x
)

continuous
2
x 1
No discontinuities
7/8/2017
Mrs. Liu's PreCalc Day19
29
Example 4 Find the
points at which the
function is not
continuous
f ( x )  2x  3
No discontinuities
7/8/2017
Mrs. Liu's PreCalc Day19
30
Example 5 Find the
points at which the
function is not
continuous
x=0
7/8/2017
x
f( x ) 
x
Mrs. Liu's PreCalc Day19
31
Example 6 Find the
points at which the
function is not
x<1/3
continuous
f ( x )  3x  1
4
7/8/2017
Mrs. Liu's PreCalc Day19
32
Example 7 Find the
points at which the
function is not
No discontinuities
continuous
5
f( x )  2  x
7/8/2017
Mrs. Liu's PreCalc Day19
33
Example 8 Define
g(x) so that g(3)=6
2
g(x)=(x -9)/(x-3) is
continuous at x=3
7/8/2017
Mrs. Liu's PreCalc Day19
34
Example 9 Define
3
f(1) so that f (1 ) 
2
3
2
f(x)=(x -1)/(x -1) is
continuous at x=1
7/8/2017
Mrs. Liu's PreCalc Day19
35
Example 10 Given g(x)
1
 3
x
,
x


2
g( x )  
1
2
bx , x 

2
7/8/2017
Mrs. Liu's PreCalc Day19
36
What value should
be assigned to b to
make g(x)
continuous at
x=1/2?
7/8/2017
1
b
2
Mrs. Liu's PreCalc Day19
37
Example 11: Find
the limit
0
limtan x
x 0
7/8/2017
Mrs. Liu's PreCalc Day19
38
Example 12: Find
the limit
lim sin(
x 0
7/8/2017
1

2
cos(tan x ))
Mrs. Liu's PreCalc Day19
39
Example 13: Find the
vertical asymptote(s) of
3
f(x) =
(x + 2)
7/8/2017
Mrs. Liu's PreCalc Day19
40
Example 14: Find
the vertical
asymptote(s) of
1
f(x) = 2
x -x-2
7/8/2017
Mrs. Liu's PreCalc Day19
41
x=2
x = -1
7/8/2017
1
f(x) = 2
x - x -2
1
=
(x + 1)(x - 2)
Mrs. Liu's PreCalc Day19
42
Example 15: Find the
end behavior
asymptote(s) of
x +1
f(x) = 2
x - x -6
7/8/2017
Mrs. Liu's PreCalc Day19
43
vertical asymptotes
end behavior asymptote (horizontal)
7/8/2017
Mrs. Liu's PreCalc Day19
44
Example 16
Find limf(x) if
x 
a )2
b )2
2x  7
f(x) = 3
2
x  x  x 7
3
7/8/2017
Mrs. Liu's PreCalc Day19
45
Example 17
Find limf(x) if
x 
3x  7
f(x) = 2
x 2
7/8/2017
Mrs. Liu's PreCalc Day19
a )0
b )0
46
Example 18
Find limf(x) if
x 
f(x) =
7/8/2017
x
4
a )
b
)


x 1
3
Mrs. Liu's PreCalc Day19
47
Example 19
Find limf(x) if
x 
a )0
b )0
10 x  x  31
f(x) =
6
x
5
7/8/2017
Mrs. Liu's PreCalc Day19
4
48
Example 20
Find limf(x) if
x 
a ) 1
b
)

1
4
x
f(x) = 4
3
2
x 7 x 7 x  9
7/8/2017
Mrs. Liu's PreCalc Day19
49
Lesson quiz 1: Given
 x  1, 1  x  0

2
x
,
0

x

1

f ( x )   1,
x 1
2 x  4, 1  x  2

2x 3
 0,
2
7/8/2017
Mrs. Liu's PreCalc Day19
50
 x  1, 1  x  0

2
x
,
0

x

1

f ( x )   1,
x 1
2 x  4, 1  x  2

2x 3
 0,
2
a) Does f(1) exist?
7/8/2017
yes,f (1)  1
Mrs. Liu's PreCalc Day19
51
 x  1, 1  x  0

2
x
,
0

x

1

f ( x )   1,
x 1
2 x  4, 1  x  2

2x 3
 0,
2
b) lim f(x) exist?
x 1 yes,limf ( x )  2
7/8/2017
x 1
Mrs. Liu's PreCalc Day19
52
 x  1, 1  x  0

2
x
,
0

x

1

f ( x )   1,
x 1
2 x  4, 1  x  2

2x 3
 0,
2
c) Does lim f(x) = f(1)?
x 1
7/8/2017
Mrs. Liu's PreCalc Day19
No
53
 x  1, 1  x  0

2
x
,
0

x

1

f ( x )   1,
x 1
2 x  4, 1  x  2

2x 3
 0,
2
d) Is f(x) continuous at x = 1?
7/8/2017
Mrs. Liu's PreCalc Day19
No
54
 x  1, 1  x  0

2
x
,
0

x

1

f ( x )   1,
x 1
2 x  4, 1  x  2

2x 3
 0,
e) At what values of x
is f(x) continuous? all points in [-1, 3]
2
7/8/2017
except x = 0, 1, 2
Mrs. Liu's PreCalc Day19
55
 x  1, 1  x  0

2
x
,
0

x

1

f ( x )   1,
x 1
2 x  4, 1  x  2
f) How should h be

0,
2

x

3


defined to make h a
h(
x
)

f
(
x
)
continuous extension
of f to the point x = 1? x  1,h(1)  2
2
7/8/2017
Mrs. Liu's PreCalc Day19
56
Related documents