Download Linear Systems. LU.

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Tutorial 4. Least Squares.
1. Reminder: Least squares solution
A x  b  min A x  b 2  minA x  bT A x  b
2
x

min x T A T A x  x T A T b  b T A x  b T b
x
Taking the derivative we obtain:
The normal equation:
T

2A T A x  2A T b  0
A T Ax  A T b
 
T
If A A  0 then there is a unique global solution: x*  A A
1
ATb
If A is square and invertible, then the unique solution is x*  A 1 b
2
General Quadratic Equation (K positive semi-definite):

min x T K x  2x T f  c
x
The derivative this time is given by:

2K x  2f  0
If K  0 then there is a unique global solution: x*  K 1 f
If K is singular, any solution satisfying K x*  f leads to the
minimal value, and there are infinitely many of those.
3
2. Derivatives of Matrix-Vector Expressions
Given the function:

T

T
T
T

f ( x)  x A x  2b x  c x Dx  2e x  f

 

α( x )
With symmetric matrices:
β( x )
T
A  A;
T
D D
f ( x )  2A x  b β( x )  2Dx  e α( x )
The minimizer of f(x) should satisfy the cubic equation:
β(x)A  α(x)Dx  β(x)b  α(x)e 
4
(continue)
For the special case:

T
T
f ( x)  x A x  2b x  c
We obtain the requirement:

2
αx A x  b   0
Thus, the possible solutions (zeroing the
gradient of the function) are:
1. αx   0
2. A x  b  0
If x αx   0, the first solution is
meaningless, and second solution is the
correct one.
If x αx   0 , the first solution is the
correct one, and the second represents a
local maximum!!!!!!
5
Example:

T
T
f ( x)  x A x  2b x  c
A=[4 1; 1 2];
b=[2;1];

2
c=-50;
for ind1=1:100
x1=ind1/10-5;
for ind2=1:100
x2=ind2/10-5;
h(ind1,ind2)=[x1,x2]*A*[x1;x2]-b'*[x1;x2]+c;
end;
end;
figure(1); meshc(h);
figure(2); meshc(h.*h);
axis([0 100 0 100 0 3000]); caxis([0 3000]);
Note: In this case, the value of (x) can get
below zero, as the next figures show
6
7
3. Perform: Polynomial fitting
50
40
x = (-3:.06:3)'; PointNum=size(x,1);
C=[-3 1 2 -1];
y0=C(1)+C(2)*x+C(3)*x.^2+C(4)*x.^3;
y=y0+10*randn(PointNum,1);
figure(1); clf; plot(x,y0,'r');
hold on; plot(x,y,'.b');
30
20
10
0
-10
-20
Lets search by curve fitting the best
Polynomial of orders 2-10, and see how they
perform (visually and by evaluating the error):
-30
-3
-2
-1
0
1
2
3
A=[ones(PointNum,1),x,x.^2,x.^3,x.^4,x.^5,x.^6,x.^7,x.^
8,x.^9,x.^10];
c10=inv(A'*A)*A'*y;
c8=inv(A(:,1:8)'*A(:,1:8))*A(:,1:8)'*y;
c6=inv(A(:,1:6)'*A(:,1:6))*A(:,1:6)'*y;
c4=inv(A(:,1:4)'*A(:,1:4))*A(:,1:4)'*y;
c2=inv(A(:,1:2)'*A(:,1:2))*A(:,1:2)'*y;
8
(continue)
disp(sqrt(mean((y0-A*c10).^2)));
figure(2); clf;
plot(x,y0,'r'); hold on;
plot(x,y,'.b');
50
plot(x,A*c10,'g');
40
2.2604
30
20
10
0
-10
-20
-30
-3
-2
-1
0
1
2
3
9
(continue)
disp(sqrt(mean((y0-A*c8).^2)));
figure(3); clf;
plot(x,y0,'r'); hold on;
plot(x,y,'.b');
50
plot(x,A(:,1:8)*c8,'g');
40
1.9877
30
20
10
0
-10
-20
-30
-3
-2
-1
0
1
2
3
10
(continue)
disp(sqrt(mean((y0-A*c6).^2)));
figure(4); clf;
plot(x,y0,'r'); hold on;
plot(x,y,'.b');
50
plot(x,A(:,1:6)*c6,'g');
40
1.8918
30
20
10
0
-10
-20
-30
-3
-2
-1
0
1
2
3
11
(continue)
disp(sqrt(mean((y0-A*c4).^2)));
figure(5); clf;
plot(x,y0,'r'); hold on;
plot(x,y,'.b');
50
plot(x,A(:,1:4)*c4,'g');
40
0.8114
30
20
10
0
-10
-20
-30
-3
-2
-1
0
1
2
3
12
(continue)
disp(sqrt(mean((y0-A*c2).^2)));
figure(6); clf;
plot(x,y0,'r'); hold on;
plot(x,y,'.b');
50
plot(x,A(:,1:2)*c2,'g');
40
6.9345
30
20
10
0
-10
-20
-30
-3
-2
-1
0
1
2
3
13
Related documents