Download Common Discrete Distributions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Common Continuous Distributions
The Uniform Distribution
Definition: the Uniform Distribution has a constant (uniform) pdf from a to b.
1
Probability Function: f ( x)  Pr( X  x) 
ba
xa
Distribution Function: F ( x)  Pr( X  x) 
ba
ab
(also Median)
2
2
2


b  a
Length
var(
X
)


Variance:
12
12
bt
at
e e
MGF: M X (t ) 
t (b  a)
Moments: Mean: E[ X ] 
Hint: The probability of an interval event E=(c,d ) is proportional to its length.
d c
Pr( E ) 
ba
The Exponential Distribution
Probability Function: f ( x)  Pr( X  x) 
1

e
 1 x
(x > 0)
Distribution Function: F ( x)  Pr( X  x)  1  e
 1 x
Moments: Mean: E[X ]  
Variance: var( X )   2
Median: m   ln( 2)
1
1
t
MGF: M x (t ) 
1  t

Memoryless Property: PrX  x0  x X  x0   Pr X  x
The Pareto Distribution
Probability Function: f ( x)  Pr( X  x) 
 
(x > 0)
x    1

  
Distribution Function: F ( x)  Pr( X  x)  1  
 (x > 0)
 x  

Moments: Mean: E[ X ] 
(α> 1)
 1
Variance: var( X ) 
 2
(α> 2)
  12   2
The One Parameter Pareto Distribution
Probability Function: f ( y)  Pr(Y  y) 
 
y 1
(x > 0)

 
Distribution Function: F ( y )  Pr(Y  y )  1    (x > 0)
 y

Moments: Mean: E[Y ] 
(α> 1)
 1
Variance: var(Y ) 
 2
(α> 2)
  12   2
The Gamma Distribution
x
x 1e 
Probability Function: f ( x)  Pr( X  x)  
(x>0,α>0,θ>0)
  
For positive integer α Γ(α) = (α-1)!

Otherwise ( )   x 1e  x dx
0
x
x 2
x  1 







Distribution Function: F ( X )  Pr( X  x)  1  e 1  
 

1
!
2
!
(


1
)!


(x > 0,α integer)
Moments: Mean: E[ X ]  

x
Variance: var( X )   2
1
1
t
MGF: M x (t ) 


1  t 
Additive Property: If {Xi} is a fimily of independent, gamma distributed variables
with parameters αi and θ then  Xi is gamma distributed with parameters αi and
θ
Note: The exponential distribution is a gamma distribution with α = 1. Also the
sum of n exponential distributions with identical means of θ is a gamma
distribution with α = n and θ = θ.
The Chi-square Distribution (Parameter r = Degrees of Freedom)
r
Chi-square is a gamma distribution with   and   2
2
r
Probability Function: f ( x)  Pr( X  x) 
Moments: Mean: E[ X ]  r
1
x
x2 e 2
2 2  2r 
r
(x>0,r>0,θ>0)
Variance: var( X )  2r
1
MGF: M (t ) 
r
(1  2t ) 2
Additive Property: If {Xi} are independent chi-square distributed variables with ri
degrees of freedom, then Xi is shi-square distributed with  ri degrees of
freedom.
Note: The exponential distribution is a chi-square distribution with r = 2.
The Weibull Distribution

 x 
x 1e 
Probability Function: f ( x)  Pr( X  x) 
(x>0,τ>0,θ>0)

[0 ≤ x ≤ 1, a > 0, b > 0]
 1
Moments: Mean: E[X ]  1  
 
2
 2   2  1   1  
Variance: var( X ) 
2       
           
1
Median: m   ln( 2)  
The Beta Distribution
(a  b  1)! a1
x (1  x) b1
(a  1)! (b  1)!
[0 ≤ x ≤ 1, a > 0, b > 0]
(a  b) a1
Alternate Notation: f ( x) 
x (1  x) b1
(a)(b)
a
 a  a  1 
E[ X 2 ]  
Moments: Mean: E[ X ] 


ab
 a  b  a  b  1 
ab
Variance: var( X ) 
2
(a  b) (a  b  1)
Probability Function: f ( x)  Pr( X  x) 
Related documents