Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
The Binomial
Theorem
Lecture 34
Section 6.7
Wed, Mar 28, 2007
The Binomial Theorem

Theorem: Given any numbers a and b and
any nonnegative integer n,
 n  n i i
a  b    a b .
i 0  i 
n
n
The Binomial Theorem
Proof: Use induction on n.
 Base case: Let n = 0. Then


(a + b)0 = 1 and
 0  0 i i  0  0  0 0
 a b   a b  1.

i 0  i 
0
0

Therefore, the statement is true when n = 0.
Proof, continued

Inductive step
Suppose the statement is true when n = k
for some k  0.
 Then
a  b k 1  a  b a  b k

 k  k i i
 a  b   a b
i 0  i 
k
 k  k i 1 i k  k  k i i 1
   a
b    a b
i 0  i 
i 0  i 
k
Proof, continued
 k  k i 1 i k 1  k  k i i 1 k 1
 a    a
b    a b  b
i 1  i 
i 0  i 
k
k
k


 k  k i 1 i
k 1
k i 1 i
a
 a    a
b   
b  b k 1
i 1  i 
i 1  i  1
k 1
a
k 1
k
  k   k   k i 1 i
 a
      
b  b k 1
i 1   i   i  1 
k
Proof, continued
 k  1 k i 1 i
k 1


 a  
a
b b

i 1  i 
k 1 k  1

 k i 1 i
a
  
b.
i 0  i 
k 1


k
Therefore, the statement is true when n = k
+ 1.
Thus, the statement is true for all n  0.
Example: Binomial
Theorem

Expand (a + b)8.
C(8, 0) = C(8, 8) = 1.
 C(8, 1) = C(8, 7) = 8.
 C(8, 2) = C(8, 6) = 28.
 C(8, 3) = C(8, 5) = 56.
 C(8, 4) = 70.

Example: Binomial
Theorem

Therefore,
(a + b)8 = a8 + 8a7b + 28a6b2 + 56a5b3
+ 70a4b4 + 56a3b5 + 28a2b6 + 8ab7 + b8.
Example: Calculating 1.018
Compute 1.018 on a calculator.
 What do you see?

Example: Calculating 1.018
Compute 1.018 on a calculator.
 What do you see?
 1.018 = 1.0828567056280801.

Example: Calculating 1.016

1.018 = (1 + 0.01)8
= 1 + 8(0.01) + 28(0.01)2 + 56(0.01)3
+ 70(0.01)4 + 56(0.01)5 +
+ 28(0.01)6 + 8(0.01)7 + (0.01)8
= 1 + .08 + .0028 + .000056 + .00000070
+ .0000000056 + .000000000028 +
+ .00000000000008
+ .0000000000000001
= 1.0828567056280801.
Example: Approximating
(1+x)n

Theorem: For small values of x,
1  x 
n
 1  nx.
n(n  1) 2
1  x   1  nx 
x .
2
n(n  1) 2 n(n  1)( n  2) 3
n
1  x   1  nx 
x 
x.
2
6
n
and so on.
Example
For example,
(1 + x)8  1 + 8x + 28x2
when x is small.
 Compute the value of (1 + x)8 and the
approximation when x = .03.
 Do it again for x = -.03.

Expanding Trinomials

Expand (a + b + c)3.
Expanding Trinomials
Expand (a + b + c)3.
 (a + b + c)3 = ((a + b) + c)3
= (a + b)3 + 3(a + b)2c
+ 3(a + b)c2 + c3,
= (a3 + 3a2b + 3ab2 + b3)
+ 3(a2 + 2ab + b2)c
+ 3(a + b)c2
+ c3.

Expanding Trinomials
= a3 + 3a2b + 3ab2 + b3 + 3a2c + 6abc
+ 3b2c + 3ac2 + 3bc2 + c3.
 What is the pattern?
Expanding Trinomials

(a + b + c)3 = (a3 + b3 + c3)
+ 3(a2b + a2c + ab2 + b2c + ac2 + bc2)
+ 6abc.
The Multinomial Theorem

Theorem: In the expansion of
(a1 + … + ak)n,
the coefficient of a1n1a2n2…aknk is
n!
n1!n2 ! nk !
Example: The Multinomial
Theorem
Expand (a + b + c + d)3.
 The terms are

a3, b3, c3, d3, with coefficient 3!/3! = 1.
 a2b, a2c, a2d, ab2, b2c, b2d, ac2, bc2, c2d,
ad2, bd2, cd2, with coefficient 3!/(1!2!) = 3.
 abc, abd, acd, bcd, with coefficient
3!/(1!1!1!) = 6.

Example: The Multinomial
Theorem

Therefore,
(a + b + c + d)3 = a3 + b3 + c3 + d3 + 3a2b
+ 3a2c + 3a2d + 3ab2 + 3b2c + 3b2d
+ 3ac2 + 3bc2 + 3c2d + 3ad2 + 3bd2
+ 3cd2 + 6abc + 6abd + 6acd + 6bcd.
Example: The Multinomial
Theorem

Find (a + 2b + 1)4.
Actuary Exam Problem

If we expand the expression
(a + 2b + 3c)4,
what will be the sum of the coefficients?
Related documents