* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download basic college math
Infinitesimal wikipedia , lookup
Large numbers wikipedia , lookup
Mathematics of radio engineering wikipedia , lookup
History of logarithms wikipedia , lookup
List of prime numbers wikipedia , lookup
Elementary arithmetic wikipedia , lookup
Location arithmetic wikipedia , lookup
Approximations of π wikipedia , lookup
BASIC COLLEGE MATH MT102 Whole Number Objectives           Standard and expanded form Write a standard numeral in words Determine if a given number is less than or greater than another. Round a number to the nearest ten, hundred, or thousand Be able to add, subtract, multiply and divide Determine if a number is prime or composite Find the prime factors of a number Write a number as the product of primes Order of operations Solving simple equations Standard and expanded form  Examples of standard form:  406  5143  98  Examples of expanded form:  400 +0+6  5000 + 100 + 40 + 3  90 + 8 Write a standard numeral in words using place value  Know your place value chart!  Pg. 7 The “and” is only used to hold the decimal point  The place values behind the decimal end with a “th”  Determine if a given number is less than or greater than another.  A < B (A is less than B)  Example:   5<9 A > B (A is greater than B)  Example:  12 > 5 Round a number to the nearest ten, hundred, or thousand  Rules for rounding:  Step 1: Underline the place to which you are rounding.  Step 2: If the first number to the right of the underlined place is 5 or more, add one to the underlined number. Otherwise do not change the underline number.  Step 3: Change all the numbers to the right of the underlined number to zeros. Be able to add, subtract, multiply and divide  The definitions:           Addend = numbers to be added Sum = the result or total in an addition problem Minuend = the larger of the numbers in a subtraction problem Subtrahend = the number being subtracted Difference = the result in a subtraction problem Multiplier, multiplicand, factor = numbers being multiplied Product = the result in a multiplication problem Dividend = the number being divided Divisor = the number used to divide Quotient = the result in a division problem Be able to add, subtract, multiply and divide  Practice, practice, practice Determine if a number is prime or composite  A prime number is a number having exactly two different factors, itself and 1.   examples: 2, 3, 5, 7, and 11 A composite number is any number that is greater than one and not prime.  example: 4, 6, 8, 9, and 12 Find the prime factors of a number  Take the number and divided by the first few primes  2,  3, 5, 7, 11, and so on For help look at the rules of divisibility  Pg. 73 & 74 Write a number as the product of primes  You can write in the form of a factor tree or in base and exponent form.  Pg. 75 Order of operations  PEMDAS  Do all calculations inside grouping symbols like parentheses, brackets, or braces  Evaluate all exponential expressions  Do all multiplications and divisions in order from left to right  Do additions and subtractions in order left to right. Solving simple equations The solution of an equation is the replacement that makes the equation a true statement. When we find the solution of an equation we say that we have solved the equation.  Examples:  X – 7 = 14  X + 13 = 26  Fractions p.111 Diagrams  http://www.visualfractions.com/index.htm  Proper and Improper Fractions p.111 A proper fraction is a fraction in which the numerator is less than the denominator.  An improper fraction is a fraction in which the numerator is equal to or greater than the denominator.  Improper Fractions as Mixed Numbers p.112   A mixed number is a number representing the sum of a whole number and a proper fraction. To write an improper fraction as a mixed number:    Divide the numerator by the denominator. This will be your whole number in your mixed number The fractional part uses the remainder as the numerator and the same denominator as the original fraction. Example:  17/2 = 8 1/2 Mixed Numbers as Improper Fractions p.1113  To write a mixed number as an improper fraction:  Multiply the denominator by the whole number and add the numerator.  Use the number obtained above as the numerator and the same denominator as the denominator. Equivalent Fractions p.121  Equivalent fractions  Fraction A can  15/30  be reduced to equal fraction B =½ To obtain an equivalent fraction you multiply the numerator and denominator by the same number.  3/5 = 3(2)/5(2) = 6/10 Reducing Fractions p. 123 A fraction is reduced to lowest terms when there are no common factors in the numerator and denominator.  You can usually start by dividing the numerator and denominator by 2 or 3 (primes)  This is done quickly by finding the GCF (greatest common factor)  Comparing Fractions p.124  To compare fractions write both fractions with the same denominator.  Easiest:  product of both denominators Example: 3/5, 10/30 3(30)/5(30) = 90/150, 10(5)/30(5) = 50/150  Which fraction is larger?  3/5 > 10/30  Multiplication of Fractions and Mixed Numbers p.134  Multiply fractions across  Products of numerators  Products of denominators  Multiply mixed numbers  turn all mixed numbers into improper fractions  Multiply away Fractions and exponents p.134 (2/3)2  2/3(2/3) = 4/9  Division of Fractions and Mixed Numbers p.135       Flip and multiply! Flip and multiply! Flip and multiply! 3/5 divided by 2/3 (3/5)3/2 = 9/10 Dividing mixed numbers  turn all mixed numbers into improper fractions  Divide away Adding and Subtracting Fractions  When adding/subtracting fractions:  The  fractions must have the same denominator Finding the lowest common denominator  You can list multiples p. 145  You can divide each denominator by primes (factor tree)  Finding the greatest common denominator  Multiply the denominators  REDUCE! Adding and Subtracting Mixed Numbers Convert mixed numbers in to improper fractions  Find a common denominator  Add or subtract away!  Order of operations Please  Excuse  My  Dear  Aunt  Sally  Decimals p.192             Write the word name for a decimal Write a decimal in expanded form Add two or more decimals Subtract one decimal from another Multiply two or more decimals Divide one decimal by another Round decimals Write a fraction as an equivalent decimal Write repeating decimal as a fraction Compare two or more decimals Compare fractions to decimals Order of operations for decimals Write the word name for a decimal p.192 Remember the decimals point means “and”  Example   567.89  Five hundred sixty seven and eighty nine hundredths Write a decimal in expanded form p.193  Example  245.34  200 + 40 + 5 + 3/10 + 4/100 Add two or more decimals p.193 The decimal points need to be lined up  Remember to add from right to left  Example   245.67  + 32.23  277.9 Subtract one decimal from another p.196 The decimal points need to be lined up  Remember to subtract from right to left  Example   145.67  - 22.20  123.47 Multiply two or more decimals p.204    Multiply the two decimal numbers as if they were whole numbers. The number of decimal digits in the product is the sum if the number of decimals digits in the factors Example      2.29 → two decimal digits x 3.5 → + one decimal digit 1145 687 8.015 → three decimal digits Divide one decimal by another p.206      Write the problem in long division form Move the decimal point in the divisor until a whole number is obtained Move the decimal point in the dividend the same number of places as you moved in the divisor Place a decimal point directly above the decimal point in the dividend Divide Divide one decimal by another p.206 6.5 √52  65 √52  65 √520.  65 √520.  Round decimals p.208 Same principle as rounding whole numbers  Example   Round  45.68 45.6783 to the nearest hundredth Write a fraction as an equivalent decimal p.215 You need to do the division in the fraction to get the equivalent fraction  Example  2 ⅜ = 19/8 = 2.375 Write repeating decimal as a fraction p.218    Write the repeating part as the numerator of the fraction The denominator consist of as many nines as there are digits in the repeating decimal Example  .¯9  9/9  Another example  .¯324  324/999 Compare two or more decimals p.224    To compare decimals make sure all decimals have the same number of decimal digits (use extra 0s to the right of the decimal point if necessary) Compare corresponding digits starting at the left until two of the digits are different. The number with the larger digit is the larger of the decimals Example  9.234 > 9.210 Compare fractions to decimals p.225  Write both in the same form (decimals or fractions) Order of operations for decimals p.227  Again  Please  Excuse  My  Dear  Aunt  Sally Ratio, Rate & Proportions Ratio = a quotient of two numbers  Rate = is a ratio used to compare two different kinds of measures  Proportions = a equation that states that two ratios are equal.  3 ways to write ratios 3 to 8  3:8 ⅜   * ratios can be reduced, but should not be written as mixed numbers! Reducing ratios  If ratio has decimals, move the decimal point to make the numbers whole numbers. Remember you have to move the decimal point the same number of digits on the top and bottom.  Example    7.26 to 2.31 726 to 231 22 to 7 Using mixed numbers in Ratios      Write 2⅓ days to 2 days as a ratio in lowest terms. 2⅓ 2 Change mixed number to an improper number 7/3 2 7X 1 =7 3 2 6 Solving for an unknown using proportions. 5=x 8 12  5(12) = 8(x)  60 = 8x  60 = 8x/8  60/8 = x  X = 7.5  Solving for a unit rate  Unit rate = a rate in which the denominator is 1 is called a unit rate. Solving for a unit rate          If my car drove for 450 miles on one tank of gas (15 gallons), what is the unit rate? 450 miles for 15 gallons X miles for 1 gallon 450 = x 15 1 450 = 15(x) 450/15 = x X = 30 Remember to ALWAYS write your units of measurement My car gets 30 miles per gallon!
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            