Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Logarithmic Functions TS:Making Decisions After Reflection and Review Objectives To write exponential equations in logarithmic form. To use properties of logarithms to expand and condense logarithmic expressions. Logarithmic Functions Key to understanding logarithms: A logarithm is an exponent! log B A C Base Exponent Argument BC A It is asking: “What power would I take b to in order to get a?” Logarithmic Functions Exponential Form Logarithmic Form 2 8 log 2 8 3 52 25 log5 25 2 10 x 7 log10 7 x 43 64 log 4 64 3 5 125 log5 125 x 3 x Logarithmic Functions Evaluate: log3 9 n 3n 9 n2 Logarithmic Functions Evaluate: log5 1 n 5n 1 n0 Logarithmic Functions Evaluate: log 4 2 n 4 2 n 2 2 n 2 1 2 2 2n 1 2n 1 n 12 Logarithmic Functions Evaluate: log5 5 n 5n 5 n 1 Logarithmic Functions Evaluate: log 5 53 n 5n 53 n3 Logarithmic Functions Evaluate: log10 1000 n 10n 1000 n3 Logarithmic Functions Evaluate: log 0.01 n 1 10 100 n 10 1012 n 10 10 n n 2 2 Special Bases log10 A log A Common log log e A ln A Natural log Natural Logarithm Evaluate: ln1 0 ln e 1 ln e 4 4 Properties of Logarithms ln AB ln A ln B A ln ln A ln B B ln A B ln A B ln e x x e ln x x Properties of Logarithms Expand: 3x 2 ln y ln 3x 2 ln y ln 3 ln x 2 ln y ln 3 2ln x ln y Properties of Logarithms Expand: ln x x 1 2 ln x ln x 1 2 ln x 2ln x 1 ln does not distribute! ln x 1 ln x ln1 Properties of Logarithms Expand: x2 ln 3 6y ln x 2 ln 6 y 3 ln x 2 ln 6 ln y 3 2ln x ln 6 3ln y Properties of Logarithms Expand: x2 y3 ln ln 1 2 1 2 1 2 2 x y3 ln 1 2 x2 y3 2 3 ln x ln y 2ln x 3ln y ln x 32 ln y Conclusion A logarithm indicates the exponent to which you raise a certain base in order to produce a given value. The inverse of logarithmic function is an exponential function. Logs to the base 10 are written without a base. Logs to the base e are indicated by the symbol ln. Begin your HW –Day 7 p.283 #1-8, 23-39 Re-write the logarithmic Apply the inverse properties of equation as an exponential logarithmic and exponential equation, or vise versa. functions to simplify. 1) ln 2 0.6931 2) ln8.4 2.1282 3) ln 0.2 1.6094 4) ln 0.056 2.8824 5) e 0 1 6) e 2 7.3891 7) e 3 0.0498 8) e0.25 1.2840 23) 24) 25) 26) 27) 28) x2 ln e 2 x 1 ln e eln(5 x2) 1 ln e2 x ln x e ln x3 8 e Logarithmic Functions Day 2 TS:Making Decisions After Reflection and Review Objectives To use properties of logarithms to expand and condense logarithmic expressions. To be able to solve logarithmic and exponential equations Properties of Logarithms ln AB ln A ln B A ln ln A ln B B ln A B ln A B ln e x x e ln x x Properties of Logarithms Combine: ln 4 ln x ln 4x Properties of Logarithms Combine: 2ln 8 5ln z ln82 ln z 5 ln 64z 5 Properties of Logarithms Combine: ln x 1 ln x 2 3ln x ln x 1 x 2 ln x ln x 3 x 2 ln x 2 ln x 2 3 x 2 x3 3 3 Properties of Logarithms Combine: 4ln 3 2ln x ln y ln 3 ln x ln y 4 2 ln 81 2 ln y x ln x812 y Properties of Logarithms Combine: 2ln 3 ln x 1 2 1 2 ln 3 ln x 1 2 2 ln 9 x 2 1 1 2 Logarithmic Functions Solve: 4 x 2 64 4 x2 43 x23 x 1 Solve: 2x 7 ln 2 ln 7 x x ln 2 ln 7 x lnln 72 x 2.807 Logarithmic Functions Solve: 4 x3 9 ln 4 x3 ln 9 ( x 3)ln 4 ln 9 x 3 lnln94 x lnln 94 3 x 4.585 Solve: 2e x 10 e 5 x ln e x ln 5 x ln 5 x 1.609 Logarithmic Functions Solve: 5 2e 2e 2 x 1 2 x 1 115 110 e 2 x1 55 2 x 1 ln e ln 55 2 x 1 ln 55 2 x ln 55 1 x ln 552 1 x 1.504 Solve: 32 1.5 640 x 1.5 20 x ln 1.5 ln 20 x ln 1.5 ln 20 x ln 20 x ln1.5 x 7.39 Logarithmic Functions Solve: 50 3 e 2 x 125 3 e 2.5 e 2 x 0.5 2x e 0.5 2x ln e ln 0.5 2 x ln 0.5 x ln20.5 x 0.35 2x Solve: 8ln 3x 2 1.5 ln(3x 2) 0.1875 e0.1875 3 x 2 e 0.1875 x 2 3x e0.1875 2 3 x 1.07 Logarithmic Functions Suppose you deposit money into an account whose annual interest rate is 4% compounded continuously. How long will it take for the money to double? A Pert 2 P Pe 0.04 t 2 e0.04t ln 2 ln e0.04t ln 2 0.04t t 17.3 years Conclusion A logarithm indicates the exponent to which you raise a certain base in order to produce a given value. The inverse of logarithmic function is an exponential function. Logs to the base 10 are written without a base. Logs to the base e are indicated by the symbol ln. Begin your HW –Day 8 p.284 #41-63,67, 71-77odd Write as a single logarithm. Solve for x or t. 41) ln( x 2) ln( x 2) 42) ln(2 x 1) ln(2 x 1) 43) 3ln x 2ln y 4ln z 2 1 [2ln( x 3) ln x ln( x 1)] 44) 3 45) 3[ln x ln( x 3) ln( x 4)] 46) 2ln 3 1 2 ln( x 2 1) 47) 3 2 [ln x( x 2 1) ln( x 1)] 48) 2ln x 1 2 ln( x 1) 49) 2[ln x ln( x 1)] 3[ln x ln( x 1)] 50) 1 2 ln( x 2) 3 2 ln( x 2) 51) eln x 4 2 ln x 52) e 9 0 53) ln x 0 54) 2ln x 4 55) e x1 4 56) e 0.5 x 0.075 57) 300e 0.2t 700 58) e 0.0174t 0.5 59) 52 x 15 60) 400(1.06)t 1300