Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
AP® Calculus BC Summer Packet Welcome to AP® Calculus BC! While I realize that we will all want to relax throughout our summer, forgetting all about last year’s PreCalculus or Calculus AB classes, there are certain skills that have been taught to you over the previous years that are essential towards your success in AP Calculus BC. If you do not have these skills, you will find that you will consistently get problems incorrect next year, even though you may understand the calculus concepts. It is frustrating for students when they are tripped up by the algebra or trigonometry and not the calculus. This summer packet is intended for you to retain/review/relearn these topics. You should work these problems, in a neat, legible, organized manner. Please show all work in the space provided on each test. NO CALCULATORS ALLOWED on any part of these packets! Half of your AP exam next year (which means ½ of every Calculus Quiz/Test) is taken without the calculator, and these essential skills are typically the most costly on both in-class exams and the AP® exam. Due to the fast pace of this AP® course, we will not re-teach prerequisite material or skills! I believe you will benefit the most from this packet by starting it mid-June. You should try to complete a few problems each day, as if it was a daily journal. Do not do all of it now, and do not wait and do it a week before we start school in August. You are more likely to retain the information if you spread it out. This will be due on the first day of class for the 2013-2014 school year. Completion of these problems is a mandatory requirement, and the assignment will count in your first semester grade. Good luck and may the force be with you! Mr. Hernandez Below is a list of several websites that may help you when you come across a difficult problem. If you are unsure of how to attempt these problems, please look online for help, or send me an email. Helpful Websites http://www.calculus-help.com/tutorials/ http://www.mathtv.com/ http://archives.math.utk.edu/visual.calculus/ Bring this completed unit circle with you to class on Day 1. You should have this memorized before Day 1. List the degree and radian measure for each angle, then list the correct coordinate point values. For the Positive/Negative Portion, list the 6 trig ratios as either +/– in that quadrant. sin y coordinate cos x coordinate tan Reciprocal Identities 1 csc 1 cos sec 1 tan cot sin tan cos sin 1 sin 1 sec cos 1 cot tan cos cot sin csc Trig Identities you MUST HAVE MEMORIZED before Day 1 Pythagorean Identities Double Angle Identities sin 2 2sin cos sin 2 cos 2 1 tan 2 1 sec 2 1 cot 2 csc 2 cos 2 cos 2 sin 2 cos 2 2 cos 2 1 cos 2 1 2sin y coordinate x coordinate Odd/Even Identities sin sin odd f x f x 2 cos 2 sin 2 1 cos 2 cos cos 2 1 cos 2 even f x f x 2 Bring this completed chart of parent functions with you to class on Day 1. You should have this memorized before Day 1. f x x f x x2 f x x3 Domain: ________ Range: ___________ Domain: ________ Range: ___________ Domain: ________ Range: ___________ lim f x _____ x lim f x _____ x f x x f x Domain: ________ Range: ___________ lim f x _____ x lim f x _____ x lim f x _____ x 1 Asymptotes: ______ , ______ x Domain: ________ Range: ___________ lim f x _____ x f x e x Asymptote: _________ lim f x _____ x lim f x _____ x f x ln x Asymptote: _________ lim f x _____ x lim f x _____ x f x x Domain: ________ Range: ___________ lim f x _____ x f x 9 x2 Domain: ________ Range: ___________ Domain: ________ Range: ___________ Domain: ________ Range: ___________ lim f x _____ x lim f x _____ x lim f x _____ x f x sin x Domain: ________ Range: ___________ f x tan x f x cos x Domain: ________ Range: ___________ f x csc x Domain: ________ Range: ___________ Domain: ________ Range: ___________ Asymptotes: _________ , ________ Asymptotes: _________ , ________ f x sec x f x cot x Domain: ________ Range: ___________ Domain: ________ Range: ___________ Asymptotes: _________ , ________ Asymptotes: _________ , ________ 2. Solve for x: 2 x 3 x 1 4 2 x (a) –1 3. (b) –3 Solve for x: (a) 4 4. Solve for x: 3 (a) 5. 4x 1 2x 3 7 4 3 12 9 (b) 2 1 4 (d) (c) –2 (d) (c) 1 (d) No solution (e) None of these (d) 1 (e) None of these 3 2 (e) None of these (e) None of these 4x 5 7x 9 x2 x2 (b) –1 Solve for x: 1 3 4 2 x2 x3 x x6 4 7 (b) 3 (a) 1 3 (c) 1 (c) 7 4 6. The graph below is a transformation of the graph of (a) 7. g ( x) x 4 (b) g ( x) x 4 x 1 g ( x) x 4 (e) None of these g ( x) x 9 from the graph of f ( x) x ? (b) Reflection in the y axis Horizontal shift 9 units to the left (d) Reflection in the y axis Horizontal shift 9 units to the right (b) 2 x 2 x 2 (c) 3x 1 (d) 2 x 1 (e) None of these (d) –14 (e) None of these (d) 3x x (e) None of these 2 Given f ( x) x 2 and g ( x) 6 2 x , find ( f g )( 2) . (a) 6 10. (d) Given f ( x ) 2 x and g ( x) x 1 , find ( fg )( x ) . (a) 9. g ( x) x 4 Which sequence of transformations will yield the graph of (a) Reflection in the x axis Horizontal shift 9 units to the left (c) Reflection in the x axis Horizontal shift 9 units to the right 8. (c) f ( x) x . Find an equation for the function. Given (b) 2 (c) –2 f ( x) x 2 2 x and g ( x) 3x 2 x , find ( f g )( x) . (a) 4 x 8 x 3 2 (b) 2 x 4 x 3 2 (c) 2 x x 6 x 3 2 2 11. Given x 2 1, x 4 f ( x) , find f (2) 6 x 7, x 4 (a) –19 12. If (a) 13. 9 x (c) 4 (d) –5 (c) x – 6 (d) (e) None of these f (3) f ( x 3) x (b) x2 6 x 9 18 x x (e) None of these Find the domain of the equation shown at the right. Assume there are no breaks or discontinuities in the graph. (a) 14. f ( x) x 2 , find (b) 5 , (b) ,3 (c) 3, (d) 3, (e) None of these 3, (d) 1,5 (e) None of these Find the range of the function shown at the right. (a) , (b) 8,1 (c) 2 15. Evaluate: 1 3 64 (a) 16 16. Simplify: (a) 3 (b) 1 16 (c) 1 512 (d) –512 (b) 8 xy 3 3xy (c) 2 xy 3 6 xy 2 (d) 2 xy 3 3xy 2 (e) None of these (c) 7 2 (d) 35 2 3 (e) None of these 7 4( 2 5) (d) 1 4 2 5 (e) None of these (e) None of these 24x 4 y5 3x 2 y 2 3 6 x 2 y 3 17. 5 7 2 35 2 47 Rationalize the denominator: (a) 35 5 2 47 (b) 18. Simplify by rationalizing the numerator: (a) 1 4( 2 5) (b) 1 4( 2 5) 2 5 12 (c) 19. Solve xy ' y 1 y ' for y '. 20. Solve ln y kt for y. 21. A seven-foot ladder, leaning against a wall, touches the wall x feet above the ground. Write an expression (in terms of x) for the distance from the foot of the ladder to the base of the wall. Find the exact solution of the equations for 0 x 2 – No Decimals! No Calculators! 22. sin x 3 2 23. tan 2 x 1 24. cos x 2 2 2 25. 2sin 2 x sin x 1 0 26. sin 2 x sin x 0 27. 2 tan x sec2 x 0 Find the exact solution to each exponential or logarithmic equation – No Decimals! No Calculators! log 1 x 4 28. log 2 x 3 29. 30. log3 81 x 2 31. log x 16 4 32. 2x 3 33. ln x 5 ln x 1 ln x 1 34. 5x 125 35. 8x 16 x 36. log3 x 7 log3 2 x 1 2. The graph at the right is a transformation of the graph of (a) g ( x) x 3 3. y 3 2 x 4 2 11 x 3 3 (c) g ( x) x 3 2 (d) g ( x) x 2 3 (e) None of these (b) y 2 x 1 (c) y 3 3 x 2 2 (d) y 2 x 5 (e) None of these (b) y 4 x4 5 (c) y 2 x4 3 (d) y 4 7 x 5 2 What is the slope of the line perpendicular to the line 3 x 4 y 12? (a) Undefined 6. g ( x) x 2 3 Find an equation of the line shown at the right. (a) y 5. (b) Find an equation of the line that passes through the points (1,–3) and (4, 3). (a) 4. 2 f ( x) x 2 . Find an equation for the function. (b) 0 (c) 4 3 (d) 3 4 (e) None of these Find an equation of the line that passes through (3, 10) parallel to the line x 3 y 1 . (a) y 1 x9 3 (b) y 3x 1 (c) y 3 x 19 (d) y 1 x 11 3 (e) None of these 7. Given f ( x) 6 2 x 2 , find f ( 3). (a) 12 8. (b) 24 (b) II ( x 3) ( y 2) 49 2 (d) IV (e) None of these (b) 2 x 4 y 31 0 (c) x 2 y 7 0 (d) 2 x 8 y 45 0 2 (e) None of these 7. (b) (c) (d) ( x 3)2 ( y 2)2 7 ( x 3)2 ( y 2) 2 49 ( x 3)2 ( y 2)2 7 (e) None of these Determine the slope of the line that passes through the points (1, 3) and (–2, –2) (a) 12. (c) III Find the standard equation of the circle with center (–3, –2) and radius of (a) 11. (e) None of these Find a relationship between x and y so that (x, y) is equidistant from the two points (4, -1) and (6, 3). (a) x 4 y 3 0 10. (d) –24 Determine the quadrant in which the point (x, y) must be located if x>0 and y<0. (a) I 9. (c) –12 3 5 (b) 1 3 (c) 5 3 (d) 1 (e) None of these Find an equation of the line that passes through the point (1, –1) and has a slope of–3. (a) y 3 x 2 (b) y 3x 2 (c) y 3x 1 (d) y 3 x 4 (e) None of these 13. Add, then simplify: x 1 x3 2 x x 2 x 4x 3 (a) 2 (b) 2x 3 ( x 1)( x 3)( x 2) 14. 15. 3 2 x Simplify: x 1 x 2 1 x 1 2 x 3x 4 x2 x 4 (a) (b) ( x 2) ( x 2) 2x 4 3 x 1 2 (c) 2 x x2 (d) 2 x 2 3x 3 ( x 1)( x 3)( x 2) (e) None these (d) x 2 3x 3 ( x 1)( x 2) (e) None of these (d) 2 65 (e) None of these (d) 120x4 (e) None of these Find the distance between the points (–6, 10) and (12, 2) (a) 16. (c) 2x x 3 2 ( x x 2)( x 2 4 x 3) 2 2 7 Simplify: (a) 30x 6 (b) 2 97 (c) 10 6 6 x 5 (c) 3 x 2 (2 x)3 (5 x 1 ) (b) 24 4 x 5 of Expand each completely of the following using Log Laws: 17. log3 5x2 18. Find the exact answer to each, using the Unit Circle. 2 19. sin 20. cos 6 3 ln 5x y2 21. tan 4 22. sin 6 23. sin 24. 5 csc 6 25. sin 2 26. cos 4 27. cos 2 28. 3 cos 4 29. tan 6 30. sin 0 31. cos 0 32. tan 2 33. 3 arccos 2 34. 1 cos1 2 35. 2 sin 1 2 36. tan 1 1 Find each limit algebraically. 17. lim x 2 2 x 3 20. x4 x 2 x 2x 8 22. lim 25. lim x 5 18. x 3 x 4 x 3 x 3 x 1 lim 21. 2 x5 x5 2 x 1; f x 4 x; a) lim f x x 1 b) lim f x 19. 23. 1 x 8 x 8 lim 3x 1; f x 3 x; x 1 x 1 26. x 1 a) lim f x x 1 b) lim f x x 1 x 5 x 25 x2 2 x 3 x 3 x 2 7 x 12 lim 24. x3 8 x 2 x 2 lim x 2 ; f x 2; x 2; x 1 x 1 27. a) lim f x x 1 x 1 b) lim f x x 1 c) lim f x c) lim f x c) lim f x lim x 25 x 1 x 1 Determine the following limits graphically: 28. 29. 30. a) lim f x a) lim f x a) lim f x b) lim f x b) lim f x b) lim f x c) lim f x c) lim f x c) lim f x x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1