Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
A.Imaginary Quantity Imaginary Quantities are the root of negative numbers. e.g.: √–1, √ –3, √ – 8... Real quantities are all the other roots, except imaginary quantities. The unity quantity is √–1 and is represented by the letter i => i = √–1 The power of the imaginary quantity is: (√–1)1 => i1 = (√–1) (√–1)2 => -1 (√–1)3 = (√–1)2 * (√ –1) = (-1) * (√–1) = - (√–1) => i3 = - (√–1) (√–1)4 = (√–1)2 * (√–1)2 = (-1)*(-1) = 1 => i4 = 1 (√–1)5 = (√–1)4 * (√–1) = 1 * (√–1) = (√–1) (√-1)6 = (√-1)4 * (√-1)2 = 1 * (-1) = -1, => i6 = -1 etc. As you can see, there is a certain order. It starts with (root –1), -1, and then again, root – 1, -1... every even potent has –1, every odd potent (root –1). 1. Imaginary Pures All expression of nte √–a ( or -a 1/n), where n is even and –a is a real negative quantity, is imaginary pure. e.g.: (√–2), (√–5) are from this kind. - How to SIMPLIFY imaginary pure? All imaginary roots can be reduces to the form of the real quantity multiplied by the unity quantity (√–1). e.g. : (√–b2) = (√ b2 * (-1)) = (√b2 )* (√–1) = b * (√ –1) = b* i √- 4 = (√4 * (-1)) = (√4 ) * (√-1) = 2 *(√–1) = 2 * i √-3 = (√3 * (-1)) = (√3) * (√-1) = (√3) * (√-1) = i * (√3) 2. Add & Substract Imaginary Pures They are reduced to the real quantity by (√-1) and this is reduced to similar radicals. e.g.: (√ -4) + (√-9) for the term (√-4) you could say: (√-4) = (√4 * (-1) = 2 * (√-1) for the term (√-9) you could say: (√-9) = (√9 * (-1) = 3 * (√-1) So, instead of (√ -4) + (√-9) you could say: 2 * (√-1) + 3 * (√-1) = (2+3) * (√-1) = 5 (√-1) = 5 * i e.g. 2: 2 * (√-36) – (√-25) + (√-12) for 2 * (√-36) you could say: 2 * 6 * (√-1) = 12 * (√-1) for (√-25) you could say: 5 * (√-1) for (√-12) you could say: (√12) * (√-1) = 2 * (√3) * (√-1) so instead of 2 * (√-36) – (√-25) + (√-12) you could say: 12 * (√-1) – 5 * (√-1) + 2 * (√3) * (√-1) = (12 – 5 + 2 * (√3) * (√-1) = (7+2 * (√3) * (√-1)= [7+2 * (√3)] * i 3. Multiply You reduce the imaginary number to the formula a*(√-1). You do it, changing the power of the imaginary unity. e.g.1.: (√-4) * (√-9) = 2 * (√-1) * 3 * (√-1) = 2 * 3 * (√-1)2 = 6 * (-1) = -6 e.g. 2: (√-5) * (√-2) = [(√5) * (√-1)] * [(√2) * (√-1)] = (√10) * (√-1)2 = (√10) * (-1) = -10 e.g. 3: (√-16) * (√-25) * (-81) = (√-16) * (√-25) * (√-81) = [4 * (√-1)]*[5 * (√-1)]* 9 * (√-1)] = 180 * (-√-1) = -180 * (√-1) = -1802 4. Divide You reduce the imaginary number to the formula a * (√-1). e.g.: (√-84) / (√-7) = [(√84) * (√-1)] / [(√7) * (√-1)] = (√84) / (√7) = (√(7 / 84) = (√12) = 2 * (√3) B. Complex Quantities They are expressions that have one part real and on part imaginary. Complex Quantities are of the type a + b * (√-1), so a + b * i, where a and b are real quantities. 1. How to add For add complex quantities you add the real parts between themselves and the imaginary quantities between themselves. The complex number is build for even numbers, which they give you in order, where one is real and the other one could be imaginary. We got the theory of this numbers from Bombelli ( XVI century, Italian). Then Descrates counted the imaginary number to the non-real numbers, which is part of an complex. But this theories were not really accepted in the mathematics world until Euler punished the use. But the main point in the theory gave C.Wessler (1745-1818, Danish). He developed a geometric interpretation of complex numbers. Today this help us to show complex numbers in a graph. With complex numbers we can define all arithmetic and algebraic equations. e.g.1: [2+5 * (√-1)] + [3-2 * (√-1)] = 2+3+5 * (√-1) – 2 * (√-1) = (2+3)+(5-2) * (√-1) = 5+3 * (√-1) = 5+3 * i e.g.2: Add 5-6 * (√-1), -3+(√-1) and 4-8 * (√-1) => 5 – 6 * (√-1) +(-3)+0 * (√-1) + 4 - 8 * (√-1) = 6 - 13 * (√-1) 2. Add of conjugate complex quantities Add of conjugate complex quantities is a real quantity. ( a + b * (√-1)) + (a – b * (√-1)) = (a+a) + (b-b) * (√-1) = 2a e.g.: ( 5+3 * (√-1)) + (5-3 * (√-1)) = 2 * 5 = 10 3. Substract To subtract complex quantities you have to subtract the real numbers between themselves and the imaginary numbers between themselves also. e.g. 1: [5+7 * (√-1)] – [4+2 * (√-1)] = 5+7 * (√-1) – 4-2 * (√-1) = (5-4) + (7-2) * (√-1) = 1+5 * (√-1) = 1 + 5 *i e.g.2: [8-11 * (√-1)] - [-3-7 * (√-1)] = [8-11 * (√-1)] +[3+7 * (√-1)]= (negative brackets: sign in bracket must be changed!) 8 – 11 * (√-1) + 3 + 7 * (√-1) =11- 4 * (√-1) Subtract two conjugate complex quantities: When you subtract two combine complex quantities you get one imaginary pure. (a + b * (√-1)) – (a-b * (√-1)) = a+b * (√-1) – a+b * (√-1) = (a-a)+(b+b) * (√-1) = 2b * (√-1) = 2 * b* i 4.Multiply Complex quantities are multyply like a compose equation and as you know ,( √-1)2 = -1 e.g.: [3+5 * (√-1)] * [4-3 * (√-1)] = 3 + 5 * (√-1) * 5 - 3 * (√-1) =12 +20 *(√-1) - 9 * (√-1) – 15 * (√-1)2 12+11 * (√-1) – 15 * (-1) = 12 +11 * (√-1) + 15 = 27+11 * (√-1) Multiply conjugate complex quantities The answer of multiplying tow conjugate complex quantities is one real quantity. So, if you multiply the add by the subtract of to quantities you are going to get a difference of squares. [a+b * (√-1)] * [a-b * (√-1)] = a2-[b * (√-1)2 ]= a2- [b2 * (√-1)2] = a2-[b2(-1)] = a2-(-b2) = a2+b2 e.g.1: [8-3 * (√-1)] * [8+3 * (√-1)] = 82-(3 * (√-1)2) = 64+9=73 e.g.2: [(√3)+5 * (√-1)] * [(√3)-5 * (√-1)] = (√3)2- (5 * (√-1))2 = 3+25 = 28 C. Examples 3 * (√(-b4)) = 3 * (√(b4-1)) = 3 * b2 * (√-1) = 3 * b2 * i (√-12) = [√(12 * (-1))] = [√(22 * 3 * (-1))] = 2 * [√( 3 * (√-1))] = 2 * (√3) * (√-1) = 2 * i * (√3) 2 * [√(9 * (-1))]+3 * [√(100 * (-1))] = 2 * [√(32 * (-1))]+3 * [√102 * (-1))] = 2 * 3 * (√-1)+3 * 10 * (√-1) = (6+30) * (√-1) = 36 * i 3 * (√-64) – 5 * (√-49)+3 * (√121) = 3 * [√(64 * (-1))]-5 * [√(49 * (-1))]+3 * [√(121 * (-1))] = 3 * [√(82 * (-1))]-5 * [√(72* (-1))]+3 * [√(112 * (-1))] = 3 * 8 * (√-1)-5 * 7 * (√-1)+3 * 11 * (√-1) = (24-35+33) * (√-1) = 22 * i 5 * (√-36) * 4 * (√-64) = 5 * [√(36 * (-1))] * 4 * [√(64 * (-1))] = 5 * [√(62 * (-1))] * 4 * [√(82 * (-1))] = 5 * 6 * (√-1) * 4 * 8 * (√-1) = 30 * 32 * (√-1)2 = 960 * (-1) = -960 (√-3) * (√-2) = [√(3 * (-1))] * [√(2 * (-1))] = [√(6 * (-1)2)] -(√6) (√-10) / (√-2) = [√(10 * (-1))] / [√(2 * (-1))] = [√(5 * ((-1)/ (-1)))] = (√5) (√-81) / (√-3) = [√(81 * (-1))] / [√(3 * (-1))] = (√27) = [√(32 * 3)] = 3 * (√3) [5+(√-1)]+[7+2 * (√-1)]+[9+7 * (√-1)] = 12-11 * (√-1) + 8+7 * (√-1) = 20-4 * (√-1) = 20-4 * i [7-2 * (√-1)]+[7+2 * (√-1)] = 7-2 * (√-1) + 7+2 * (√-1) =14+0 * (√-1) = 14 [-5-3 * (√-1)]+[-5+3 * (√-1)] = -5-3 * (√-1) + -5- 3 * (√-1) = -10+0 * (√-1) = -10 [-1-1 * (√-1)] – [-7-8 * (√-1)] = -1-1 * (√-1) + 7+8 * (√-1) = 6+7 * (√-1) = 6+7 * i [4-7 * (√-1)]-[5-3 * (√-1)] = 4-7 * (√-1) -5+3 * (√-1) = -1-4 * (√-1) = -1-4 * i [-5+1 * (√-2)]-[-5-1 * (√-1)] = -5+1 * (√-2) + 5+1 * (√-2) = 2 * [√(2 * (-1))] = 2 * [√(2 * i)] [(√2)+(√-3)]-[(√2)-( √-3)] = 1 * (√2) + (√-3) - 1 * (√2) + (√-3) = 0 +2 * (√-3) =2*i [4+7 * (√-1)] * [-3-2 * (√-1)] = 4+7 * (√-1) +-3-2 * (√-1) = -12 –21 * (√-1) + -8 * (√-1) – 14 * (√-1)2 = -12 –29 * (√-1)-14 * (-1) = -12-29 * (√-1)+14 = 2 – 29 * i [8-(√-9)] * [11+(-25)] =[8-(√(9 * (-1)))] * [11+(√(25 * (-1)))] =[8-(√(32* (-1)))] * [11+(√(52 * (-1)))] = [8-3 * (√-1)] * [11+5 * (√-1)] = [8-3 * (√-1)] * [11+5 * (√-1)] = 88-33 * (√-1) 40 * (√-1)-15 * (√-1)2 = 88+7 * (√-1) +15 = 103+7 * i (1-i) * (1 + i) = 1-(√-1) * 1+(√-1) = 1-(√-1) + (√-1)-(-1) = 1 + 0+1 =2 [3+2 * (√-1)] * [3-2 * (√-1)] = [3+2 * (√-1)] * [3-2 * (√-1)] = 9+6 * (√-1) -6 * (√-1)-4 * (-1) =9+0+4 =13 Some interesting WebPages for this theme: http://whatis.techtarget.com/definition/0,,sid9_gci283974,00.html http://www.jimloy.com/algebra/imaginar.htm http://staff.jccc.net/swilson/mathtopics/complex/sqrootsimag.htm http://www.arthuryoung.com/mathexc.HTML D. Miniquiz 1.) Reduce to the real quantity, multiplied by (√-1)or i a.) (√-a2) b.) (√-2) c.) 2 * (√-9) d.) (√-81) e.) (√-6) 2.) Simplify the pure imaginary quantities a.) (√-4)+(√-16) b.) (√-26)+(√-81)-(√-49) c.) 2*[√(-a2)]+[√(-a4)]+[ √(-a6)] d.) (√-18)+( √-8)+2 * (√-50) e.) 3 * (√-20)-2 * (√-45)+3 * (√-125) 3.) Multiply the pure imaginary quantities a.) (√-16) * (√-25) b.) (√-81) * (√-49) c.) (√-3) * (√-79) d.) 2 * (√-7) * 3* (√-28) e.) (√-49) * (√-4) * (√-9) 4.) Divide the pure imaginary quantities a.) (√-16) / (√-4) b.) (√150) / (√-3) c.) 10 * (√-36) / 5 * (√-4) d.) 2 * (√-18) / (√-6) e.) (√-515) / (√-7) 5.) Add the complex imaginary quantities a.) [2+3 * (√-1)] + [5-2 * (√-1)] b.) [-4-5 * (√-1)] + [-2+8 * (√-1)] c.) [3-2 * i ] + [5-8 * i ] + [-10+13 * i ] d.) [1- i ] + [4+3 * i ] + [(√2) +13 * i ] e.) [2+(√-2)]+[4-(√-3)] 6.) Add the conjugate complex quantities a.) [-7-5 * (√-1)] + [-7+5 * (√-1)] b.) [8-3 * (√-2)] + [8+3 * (√-2)] c.) [(√2)+ i *(√3)] + [(√2)- i * (√3)] d.) [7-2 * (√-1)]+[7+2 * (√-1)] e.) [-5-3 * (√-1)] + [-5+3 * (√-1)] 7.) a.) b.) c.) d.) e.) [3-2 * (√-1)] – [5+3 * (√-1)] [8+4 * (√-1)] – [3-10 * (√-1)] [15-4 * (√-1)] – [8-7 * (√-1)] [11+80 * (√-1)] – [3-50 * (√-1)] [5-(√-25)] – [3+6 * i ] 8.) Subtract the following conjugate complex quntities a.) [2-(√-1)] – [2+(√-1)] b.) [7+3 * (√-1)] – [7-3 * (√-1)] c.) [-3-7 * (√-1)] – [-3+7 * (√-1)] d.) [-(√5)-4 8 (√-2)] – [-( √5)-4 * (√-2)] e.) [-5 * (√-2)] – [-5- (√-2)] 9.) Multiply the complex quantities a.) [3-4 * (√-1)] * [5-3 * (√-1)] b.) [7- (√-4)] * [5+ (√-9)] c.) [3+(√-2)] * [5-(√-2)] d.) [(√2)+( √5)] * [(√3)+( √-2)] e.) [4+7 * (√-1)] * [-3-2 * (√-1)] 10.) Multiply the conjugate complex quantities a.) [(√-2)-5 * i] * [(√2) 5 * i] b.) [2 * (√3)+4 * i] * [2 * (√3)-4 * i ] c.) [5-( √-2)] * [5+(√-2)] d.) [-9-(√-5)] * [-9+(√-5)] e.) [1+ i ] * [1- i ] E. Answers of the quiz 1.) a.) b.) c.) d.) e.) a*i i * (√2) 6*i 9*i i * (√6) 2.) a.) b.) c.) d.) e.) 6*i 7*i (2a+a2+a3) * i 15 * (√2i) 15 * (√5i) 3.) a.) b.) c.) d.) e.) –20 –63 –15 –84 –42 * i 4.) a.) b.) c.) d.) e.) 2 5 (√ 2) 6 2 * (√3) 3 * (√5) 5.) a.) b.) c.) d.) e.) 7+i –6 + 3 * i –2 + 3 * i (5+(√2)+7 * i 6+((√2)-(√3)) * i 6.) a.) b.) c.) d.) e.) –14 16 2 * (√2) 14 –10 7.) a.) b.) c.) d.) e.) –2-5 * i 5+14 * i 7+3 * i 8 + 130 * i 2 – 11 * i 8.) a.) b.) c.) d.) e.) –2 * i 6*i –14 * i –8 * (√(2 * i)) 2 * (√(2 * i)) 9.) a.) b.) c.) d.) e.) 3-29 * i 41 +11 * i 17 + 2 * ((2 * i)) [[(√6)-(√10)]+[2+(√15)]] * i 2-29 * i 10.) a.) 27 b.) 28 c.) 27 d.) 86 e.) 2