Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Summary 6 Translation and rotation TRANSLATION: If B=0, the general quadratic equation can be transformed to one of the standard forms of a conic section. This can be accomplished by using the translation equations x=x'+h and y=y'+k (x'=x-h and y'=y-k). Replacing x by x - h in the standard form produces a horizontal shift (phase shift) of the graph, h units to the right if h>0 or h units to the left if h<0. Replacing y by y - k produces a vertical shift of the graph, k units up if k>0 or k units down if k<0. Method I. Use completing the square, let x - h = x' and y - k = y'. Method II. 1) In the original equation substitute x = x' + h and y = y' + k. 2) Find the value of h and k that will eliminate the x-term and the y-term in the equation 3) Find the desired equation by using the values found for h and k. ROTATION: If B≠0 we need to use a rotation to transform the general equation equation to one of the standard forms. is the angle or rotation. B Step 1: Let tan 2 (if A C or let 45 if A C) AC Step 2. Using trigonometric relations and the triangle below find cos 2 which has to agree in sign with tan 2 B 2 A-C Step 3. Use the formulas 1 cos 2 1 cos 2 and cos to find sin and cos 2 2 sin Note : m tan is the slope of x cos x x cos y sin Step 4. Let y x sin y cos sin Step 5. Substitution of the results in step 4 into the original equation eliminates the xy term B sin Step 6. Using Use either tan 2 to find the or tan AC cos angle of rotation Step 7. Graph in the x'-y' coordinate system. 1 Translation I. Translation: a point P has coordinates (x, y) with respect to the x-y system. If a new system (x, y) is obtained by translated the system to a new origin with coordinates (h, k) then the coordinates of P with respect to the new system is given by the ordered pair (x-h, y-k). y y x x h y y k x x h and y y k P h x k x Example: Find the values of h and k that will eliminate the x and y terms from the equation 25x 2 9 y 2 100 x 54 y 44 0 . Use the necessary translation. Let x x h and y y k 25x 2 9y 2 100x 54y 44 0 25x h 2 9y k 2 100x h 54y k 44 0 25 x 2 2hx h 2 9( y 2 2ky k 2 ) 100x 100h 54y 54k 44 0 25x 2 9y 2 (50h 100)x (18k 54)y 25h 2 9k 2 100h 54k 44 0 50h 100 0 h 2 x x 2 x x 2 To eliminate x and y let 18k 54 0 k 3 y y 3 y y 3 The resulting equation is 25x 2 9y 2 25( 4) 9(9) 100( 2) 54( 3) 44 0 25x 2 9y 2 100 81 200 162 44 25x 2 9y 2 225 x 2 y 2 1 (an ellipse ) 9 25 ( x 2) 2 y 32 or 1 9 25 2 Example: Find the values of h and k that will eliminate the x and y terms from the equation xy2x+3y=5 Let x x h and y y k xy 2 x 3 y 5 x h y k 2 x h 3 y k 5 x y hy kx hk 2 x 2h 3 y 3k 5 x y k 2x h 3 y hk 2h 3k 5 k 2 0 k 2 x x 3 x x 3 h 3 0 h 3 y y 2 y y 2 x y (3)(2) 2(3) 3(2) 5 x y 1 Rotation: Coordinates- Rotation II. Rotation of axis. Theorem: If a system x-y is rotated counterclockwise through and angle to obtain the new system x-y, then the unit vectors in the xand yaxis of the new system are given by i i cos j sin i i cos j sin and j i sin j cos j i sin j cos y y x X Theorem: The coordinates (x, y) of a point P in the rotated system x - y are given by x x cos y sin x x cos y sin and y x sin y cos y x sin y cos 3 Example 2 - Rotate the axis to eliminate the xy term. Sketch, showing both axis. x2 - 2xy + y2 -1 =0. Step1. A C 1 45 Step 2 : Step 3 : sin Step 4 : x x 2 1 2 and cos y 2 x y 2 1 2 and x 2 y 2 x y 2 2 2 x y x y x y x y Step 5 : x 2 xy y 1 0 2 1 2 2 2 2 1 2 1 x 2 2 x y y 2 x 2 y 2 x 2 2 x y y 2 1 2 2 2 1 1 4 y2 2 y2 y two parallel lines 2 2 2 2 Y Y’ X’ x 4 Example 2 - Rotate the axis to eliminate the xy term. Sketch, showing both axis. 5x2 - 4xy + 8y2 -36=0 B 4 4 AC 58 3 3 Step 2 : cos 2 5 Step1. tan 2 3 1 1 cos 2 5 2 1 Step 3 : sin 2 2 10 5 3 1 1 cos 2 5 4 2 cos 2 2 10 5 2 x y 2 x y x 2 y x 2 y Step 4 : x and 5 5 5 5 5 5 2 2 2 x y 2 x y x 2 y x 2 y Step 5 : 5 x 4 xy 8 y 36 0 5 4 8 36 5 5 5 5 5 4 8 4 x 2 4 x y y 2 2 x 2 3 x y 2 y 2 x 2 4 x y 4 y 2 36 5 5 5 2 2 20 x 2 45 y 2 180 x2 y 2 1 an ellipse 9 4 1 tan sin 5 1 2 cos 2 5 Y Y’ x’ x 5 6