Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 5 Calculus MAT220 Mr. Schultz Fall 2005’ NAME_________________________________ Evaluate the following integrals: #1. 23 2 3 2 2 x sin( x ) d x x sin x dx x x 3 53 x 2ln x cos( x) C 5 #2. x e 2 x3 1 dx let u x3 1 then du 3x 2 dx 1 u e du 3 1 eu C 3 1 3 e x 1 C 3 #3. sec 2 x x dx let u x then du 1 2 x dx 2 sec 2 (u ) du 2 tan(u ) C 2 tan( x ) C #4. x 2 x 1dx let u x 1 then du dx and x u 1 from which x 2 u 1 u 1 2 udu u 2 2u 1 udu 3 1 52 2 u 2u u 2 du 2 72 4 52 2 32 u u u C 7 5 3 7 5 3 2 4 2 2 2 x 1 x 1 x 1 2 C 7 5 3 2 #5 3 x 1dx 0 1 3 0 1 x 1 dx x 1 dx 1 3 x2 x2 x x 2 0 2 1 . 1 9 1 1 0 0 3 1 2 2 2 1 3 1 2 2 2 2.5 4 2 -5 5 -2 -4 #6. 1 cos x sin xdx 1 x2 1 f ( x) cos x sin x f ( x) 1 x 2 cos x sin xdx 1 x2 cos x sin x f ( x) Thus, the integrand is an odd function. 1 x2 1 cos x sin xdx 0 by symmetry 2 1 x 1 #7. Find the exact value of 6 sin cos 1 sin 1 2 d Consider the identity 1 sin 2 x cos 2 x then 6 6 sin sin cos sin cos d d 1 cos d now let u cos , du sin d 1 cos 2 1 1 sin 2 6 sin 1 cos d 6 ln cos( / 6) cos(1) 1 du -ln u u cos( /6) cos(1) ln cos / 6 ln cos(1) cos(1) cos( / 6) This can clean-up to; ln 2 3 cos(1) cos(1) 0.472 ln 3 3 2 > restart:with(plots): Warning, the name changecoords has been redefined > int(tan(x),x=1...Pi/6.0); > -0.4717854342 **Note: You could let u be the entire denominator and solve 1 step! #8. (x sin(2 x 3))( x sin(2 x 3))dx x 2 sin 2 x 3 dx x 2 dx sin 2 x 3 dx x3 cos 2 x 3 C 3 2 #9. Compute d dx e2 x 1 t 2 ln tdt e 2x 2 ln e2 x 2e2 x 2e2 x e4 x 2 x #10. It is 10:00 A.M. and five ants have already entered Melissa and Ah Mihn’s picnic basket. Ants are notorious followers, so ants from all over the vicinity follow their brethren into the basket. The culinary treat awaiting them is unsurpassed elsewhere, so once an ant enters the basket he does not leave. If the rate at which the ants are climbing into the basket is well modeled by Ants(t) = 100e-0.2t ants per hour, where t = 0 is the benchmark hour of 10:00 A.M., then answer the following. A. Write an integral expression to find the number of ants there will be in the basket x hours after 10:00 A.M.. x 100e 0.2 t dt 5 0 B. If the girl’s dig into the basket at 1:00 P.M., how many ants will be inside? Give an exact answer. 3 100 u e du 5 500 e 0.6 1 5 505 500e0.6 231ants 0.2 0