Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Geometry Review Sections 4.2 – 4.6 Name: _______________________________________ 1. If pentagon TULIP pentagon DAISY , then UL __________ and SIA __________. 2. List the 5 triangle congruence postulates/theorems we have discussed thus far __________ __________ __________ __________ __________ In problems 3 & 4, consider PIG and HAM where P and H are both right angles and PI HA . What additional piece of information is required to say PIG HAM by the given postulate or theorem? Draw your own triangles to the right. 3. AAS _______________ 4. SAS _______________ I A P G M H In problems 5-10, determine whether each pair of triangles can be proven congruent. If so, (a) identify the postulate/theorem used (mark on the figure the congruent angles or segments necessary for your choice) and (b) write a congruence statement by listing the congruent triangles. NONE is a possible answer. A 5. B K G 6. 7. J L C D E F H I C 8. 60 61 60 N B 9. T M A 10. U 59 A B W E X C D Page 2 Directions for 11-13: Determine if each pair of triangles are congruent. If so, state why they are congruent and list the congruent triangles. If not, simply say “no”. PUT IN ALL THE CONGRUENCE MARKS! D 11. D 12. B 13. A C D A B C Given: DB AC , DA DC A Given: B C DB AC , B is the midpo int of AC Examples: Complete each proof by supplying the missing statements and reasons. H 14. Given: HA / / DN , HA DN Prove: HND NHA D 1. ___________________________________ 1. ______________________ 2. ___________________________________ 2. Def. of Alt. Int. Angles 3. ___________________________________ 3. ______________________ 4. ___________________________________ 4. ______________________ 5. ___________________________________ 5. ______________________ A N Page 3 V 15. Given: TV SU ,VT bi sec ts SVU Prove: STV UTV S U T 1. _________________________________ 1. ______________________ 2. _________________________________ 2. def of 3. VTS VTU 3. ______________________ 4. _________________________________ 4. ______________________ 5. _________________________________ 5. ______________________ 6. STV UTV ***Extra credit problems on back!! 6. ______________________ Page 4 Extra Credit Problems: Complete each proof. V 1. Given: TV SU , T is the midpoint of SU Prove: STV UTV 1. _________________________ 1. _________________________ 2. _________________________ 2. Def. of Perpendicular 3. VTS VTU 3. _________________________ 4. ST TU 4. _________________________ 5. _________________________ 5. _________________________ 6. STV UTV 6. _________________________ S U T L M 2. Given: LM / / JN , JK MK Prove: LMK NJK K 1. _________________________ 1. _________________________ 2. _________________________ 2. Def. of Alt. Int. Angles 3. _________________________ 3. _________________________ 4. _________________________ 4. Def. of Vert. Angles 5. _________________________ 5. _________________________ 6. _________________________ 6. _________________________ J N