Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Geometry Review Sections 4.2 – 4.6
Name: _______________________________________
1. If pentagon TULIP  pentagon DAISY , then UL  __________ and  SIA  __________.
2. List the 5 triangle congruence postulates/theorems we have discussed thus far
__________ __________
__________
__________
__________
In problems 3 & 4, consider  PIG and  HAM where  P and  H are both right angles and PI  HA .
What additional piece of information is required to say  PIG   HAM by the given postulate or theorem?
Draw your own triangles to the right.
3. AAS _______________
4. SAS _______________
I
A
P
G
M
H
In problems 5-10, determine whether each pair of triangles can be proven congruent. If so, (a) identify the
postulate/theorem used (mark on the figure the congruent angles or segments necessary for your
choice) and (b) write a congruence statement by listing the congruent triangles. NONE is a possible
answer.
A
5.
B
K
G
6.
7.
J
L
C
D
E
F
H
I
C
8.
60
61
60
N
B
9.
T
M
A
10.
U
59
A
B
W
E
X
C
D
Page 2
Directions for 11-13: Determine if each pair of triangles are congruent. If so, state why they are congruent
and list the congruent triangles. If not, simply say “no”. PUT IN ALL THE CONGRUENCE MARKS!
D
11.
D
12.
B
13.
A
C
D
A
B
C
Given: DB  AC , DA  DC
A
Given:
B
C
DB  AC ,
B is the midpo int of AC
Examples: Complete each proof by supplying the missing statements and reasons.
H
14. Given: HA / / DN , HA  DN
Prove: HND  NHA
D
1. ___________________________________
1. ______________________
2. ___________________________________
2. Def. of Alt. Int. Angles
3. ___________________________________
3. ______________________
4. ___________________________________
4. ______________________
5. ___________________________________
5. ______________________
A
N
Page 3
V
15. Given: TV  SU ,VT bi sec ts SVU
Prove:  STV   UTV
S
U
T
1. _________________________________ 1. ______________________
2. _________________________________ 2. def of 
3.  VTS  VTU
3. ______________________
4. _________________________________ 4. ______________________
5. _________________________________ 5. ______________________
6.  STV   UTV
***Extra credit problems on back!!
6. ______________________
Page 4
Extra Credit Problems:
Complete each proof.
V
1. Given: TV  SU , T is the midpoint of SU
Prove:  STV   UTV
1. _________________________
1. _________________________
2. _________________________
2. Def. of Perpendicular
3.  VTS  VTU
3. _________________________
4. ST  TU
4. _________________________
5. _________________________
5. _________________________
6.  STV   UTV
6. _________________________
S
U
T
L
M
2. Given: LM / / JN , JK  MK
Prove:  LMK   NJK
K
1. _________________________
1. _________________________
2. _________________________
2. Def. of Alt. Int. Angles
3. _________________________
3. _________________________
4. _________________________
4. Def. of Vert. Angles
5. _________________________
5. _________________________
6. _________________________
6. _________________________
J
N
Related documents