Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Class- XII
Subject - Mathematics
INDEFINITE INTEGRAL
1MARK
1.
e
2 logcos x
dx
2.
sin(tan 1 x)
1 2 tan x(tan x sec x) dx
dx
3. 1 x 2
x2
sin 1 x
dx
1 x3 5.
1 x2
4.
2
dx
.
6.
x 2 4 x 2dx
2x 1
7. ( x x
1 sin 3 x
dx
11. 3 x cos 3 x
12.
2
2x
1 4x
)
dx
dx
8.
9.
23.
x e
2
x
3
cos x dx
20.
dx 24. Prove that
Co sec x.Sec x.dx
17.
2
0
Sec 2(log x)
dx
x
2
x
.∫{f’’(ax+b)/f(ax+b)} dx 21.
a
x 10.
1
sin 2 x 2 cos x
dx
e 3 log x ( x 4 )dx
2
x 2 sin x 16.
sin
19.
x
x
e sec x log(sec x tan x)dx 14. sin 2 x cos 2 x dx
13.
15. 5 cos
1
dx
4 x 3x 2 5dx
a
18.
2
a e .a sin a dx 22.
x
x
x
x
x dx
1
a
f ( x)dx f (a x)dx
o
4MARKS
1. Evaluate :
x sin x
dx
4. 1 cos x
dx
2.
5.
dx
8. cos( x a) cos( x b) 9.
dx
sin 1 x cos 1 x
dx .
sin 1 x cos 1 x
3.
6.
1
log log x log x 2 dx
10.
2 sin x 2
x2 4
e dx
dx
4
2
12. x x 16
13. 1 cos x
14.
x
x 6(log x)
dx
7 log x 2
2
3x 2
dx . 7. Cos 4 xdx
( x 3)( x 1)
cot x dx
11.
ex
6 5e x e 2 x dx 15.
x2 1
dx
x4 1
dx
7 6 x x 2 16.
e
dx
1
x
17.
dx
21.
6 x x2
e x 1
22.
e2 x 1
2 x dx
26. e 1 27.
18.
5x 3
x 2 4x 10
31.
dx
32.
1 sin x 33. x
1/ 2
x4 x2 1
dx
2
44. x x 1
45.
x3 x2
x4 9
cos x sin
53.
58.
63.
sin 2 x
2
dx
(x 2 1)e x
dx
( x 1) 2
20.
5
55
x
x
.55 .5 x dx
( x 3)e x
( x 1)3 dx
25.
24.
x3
5 4 x x 2 26.
x2 1
tan x
dx
dx
sec 3 x dx
4
2
30. sin x.cos x
x 7 x 1 29.
dx
x2 x4 1
3
4
35.
cos 2 x cos 2
dx
cos x cos
3
2 x3
3
1 3 x x
tan
1 3x2 dx 39. x e cos x dx
xe2 x
dx
(1 2 x) 2 42.
1
tan x
dx
[log(log x)
]dx
2
sin 2 x
(log
x
)
43.
dx
x2
1
dx
dx
4
2
2
( x a)( x b) 46. ( x 1)( x 4)
47. x 1 48.
(1 x)e x
dx
(2 x) 2
sin x cos x
1
dx 52 .
dx
2
2
2
sin x b cos x
a2 x2
cos x sin x
e x 1 x e 1
tan x
2 sin 2 x
dx
55.
56.
dx 57.
dx
dx
dx 54. e x
x
e
sin x. cos x
e x
1 sin 2 x
1 cos 2 x
x
sin( x a)
1
sin 2 x
x
dx 60. 4
dx 61.
dx 62.
dx 59.
dx
2
5
sin 5 x. sin 3 x
sin( x a)
x x 1
x( x 1)
50.
dx
sin( x a) cos( x b)
51
1
1
4 cos x 3 sin x dx 64. (2 sin x 3 cos x)
67.
2
a
dx 65.
2
sin x
cos( x a )
dx
dx 66.
cos x
sin( x a)
sin( x a)
dx 68. cos 7 x dx 69. cos ec 6 x dx
sin( x b)
6MARKS
sin x
dx.
1.
sin 4 x
sin x cos x
dx
2
x sin 4 x
3.
2. cos
x
dx
( x 1) ( x 2)
2
9.
cot x
tan x dx
sin
4.
x2
x2 1
2
dx
log x 1 2 log x dx 7.
x4
x sin x cos x 2
x
3x 2
3x 2
x 1x 22 dx 10. x 1 x 2 1 dx 11. x 3 x 2 x 1 dx
1
dx 6.
5. 4
x 5 x 2 16
8.
x 1 x x
1
dx
x1/ 3 34.
sin xdx
sin( x 5) 38.
1
1
dx
log x log x 2
41.
49. cot3 dx
23.
dx
(3 sin 2) cos
d
2
4 sin
28.
cos 4 x cos 2 x
dx
36. sin 4 x sin 2 x 37.
40.
19.
5 cos
dx
3 5 sin x
x2 1
dx
x4 x2 1
1
x
dx
ax
12.
tan tan 3
1
dx
d 13
3
sin x sin 2 x
1 tan
DEFINITE INTEGRALS
4/6MARKS
2
x sin x cos x
dx
4
4
sin
x
cos
x
0
1.
3
5.
n
0
2.
xTanx
dx 3.
Secx Co sec x
a
2
x cos x dx 6. x 2 2 x 3 dx 7.
a
0
0
9.
2
1
1
1
cot x
0
0
/2
sin 2 x.log tan x dx
.
0
2 3 x
0
x ax
dx
17.
1
4
19.Evaluate
2
1
x 4 x
dx
18.
cos x
1 sin x 2 sin x dx
x
xSinx
2
0 1 Cos x
26. Evaluate
3
x
2
x Sin x dx
24.
dx
2
1
1 cos x
0
1
2
xdx
cos x b 2 sin 2 x
2
(2 x 5) dx 23.Evaluate:
1
x
0
2
20. log (1 cos x) dx .21.
1
3
a
0
2
x 1 x x 1 dx
28.
1 sin xdx
0
22.Evaluate as limit sum
2
3
27.Evaluate :-
2
dx
0 1 tan x 15.
14.
4 x
2
( x x)dx as the limit of sums.
25. Evaluate
log( 1 tan x)dx
0
dx as a limit of a sum11.
cos x
0 1 sin 2 xdx
13.
3
x
0
3
4
0
x 3 x 4 x 5 dx
a
ax
dx a 8.
ax
dx 10. Evaluate e
6
16.
sin x cos x
dx 4.
9 16sin 2 x
2
12.
/4
2x
3
1
2
3x 5 dx as limit of a sum.
5 x 1 dx as a limit of a sum.
1
APPLICATIONS OF DEFINITE INTEGRALS
1. Using integration find the area of the region bounded by the triangle whose vertices are (-1,1), (0,5)
and (3,2).
x y
x2 y2
2. Find the area of smaller region bounded by the ellipse
1 and the straight line 1
4 3
16 9
Sketch the region enclosed between circles x2 + y2 = 1 and x2 + (y – 1)2 = 1.
Also find the area of region using integration
4. Find the area of the region enclosed between the two curves x 2 y 2 1 and ( x 1) 2 y 2 1
5. Find the area of the region x, y : x 2 y 2 1 x y
6. Sketch the region common to the circle x 2 y 2 16 and the parabola x 2 6 y. Also, find the area of
the region, using integration.
7. Make the rough sketch and find the area of the region (using integration) enclosed by the curves
y2=4ax and x2=4ay.
8. Make the rough Sketch and find the area of the region
x, y : x 2 y 2 2ax, y 2 ax, x 0, y 0
9. Draw a rough Sketch of the region x, y : y 2 4 x, 4 x 2 4 y 2 9
DIFFERENTIAL EQUATIONS
4/6 MARKS
3.
1) Solve the differential equation xdy ydx x 2 y 2 dx
dy
2) Solve the differential eqn, given that y=1 when x=2: x y x 3
dx
3) Find the differential equation of the family of the curve given by x 2 y 2 2ax
4) Solve tany dx + sec2y tanx dy =0.
5)
Solve: (x2-y2) dx
+ 2xy dy = 0.
6) Solve : x dy/dx + y = y2 log x
7) Show that y=cos (cosx) is a solution of the differential equation:d2y
dy
Cotx ySin 2 x 0
2
dx
dx
8) Solve the differential equation y e y dx y 3 2 xe y dy
dx
9) Solve the differential equations x
+ y = x cos x + sin x given that y(2) = 1
dy
10) Solve the differential equation ydx ( x 2 y 2 )dy 0
dy
y cot 2 x
given y 2
11) Solve the differential
dx
4
dy
12)Solve that differential equation x 2 1 2x 2 y 2x 1
dx
dy
4 y e 2 x
13)Solve the differential equation:
dx
14)Solve differential equation y dx – x dx = xy dx
dy 2
1
15)find the solution of
+ y 2 ,7 x 0 which satisfies y(2) = 2;
dx x
x
16)Solve differential equation Sec2y . (1+x2) dy + 2x tan y dx = 0given that y
4
when x = 1
17)If y= (sin-1x)2, Prove that (1 x 2 )
d 2 y xdy
20
dx 2
dx
18.)Solve the differential equation x 2
dy 2
x 2 y 2 xy
dx
19) Solve dy/dx = xy + y + x + 1.
20) dy/dx = y + xex
dy
21)Solve Sin 1 x y
dx
22)Find the differential equation of the system of parabola’s having latus-rectum 7 and axis parallel to xaxis.
23)Solve the differential equation x
dy
y xCosx Sinx given that y =1.
dx
2
24. Solve (x2 +xy ) dy = (x2+y2).
25. cos x(1 + cos y)dx – sin y(1 + sin x)dy = 0
26. y - x dy/dx = a(y2 + dy/dx)
27. dy/dx = y cot2x , given y(/4) = 2
28. (3xy + y2 )dx + (x2 + xy)dy = 0
29. (x3 + y3 )dy = x2 y dx
30.{xcos(y/x)}(ydx + xdy) = {ysin(y/x)}(xdy – ydx)
31. dy/dx – 2y = cos3x
32. (1 + y2 )dx = (tan-1 y – x)dy
33.dy/dx + ycotx = 2x + x2 cotx , guven that y(0) = 0
34. (1 + x²)dy/dx + 2xy = 4x² given y(0) = 0
35.(1 + x²)dy/dx + 2xy = (x² + 4)1/2
36.secx dy/dx = y + sinx
37.(x(x² + y²)1/2 - y² )dx + xy dy = 0
38.Find the equation of the curve whose differential equation is (1 + y²)dx – xy dy = 0 and passes
through the point (1,0).
39.tan y dy/dx = sin(x + y) + sin(x – y)
40. Solve e2x – 3y dy + e2y – 3x dx = 0
.