Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math in Action (2nd Edition) 2B
11
Full Solutions
Rational and Irrational
Numbers
2
2.
Review Exercise 11 (p. 11.3)
(c)
1
1
   ,
2
4
 
(a)
49  7
(b)
64  8
(c)
1 1

9 3
1 1

4 2
1.
2.
(a)
20  2  2  5
 22  5
Classwork (p. 11.5)
(∵
4  2)
(e) No

∵


1
1
 
16 4 
(f) No

∵


4
2
 
25 5 
(a) No
(b) 162  2  3  3  3  3
(b) Yes
 2  34
(c) Yes
(c)
315  3  3  5  7
(d) Yes
 32  5  7
Activity
Activity 11.1 (p. 11.10)
1.
4  9  36 ,
6
(a) (i)
(ii)
(iii)
4  9  23
6
4  25  100 ,
 10
4  25  2  5
9  16  144 ,
 12
9  16  3  4
 10
2
4
2
2
    ,
9
3
3
 
(b) (i)
2
(ii)
4
2
2
    ,
25
5
5
 
2
(iii)
2.
9
3
3
    ,
16
4
4
 
(a)
ab  a  b
(b)
a

b
Classwork (p. 11.7)
(a)
 12
4

9
4
16
(c)

2
5

3
4
25
9
(b) 6 
2
3
4
(d) 
6
1
2 14

3 3
3 3 
3 

 or

5
5 
5
15
3

100 20
(e)
0.15 
(f)
 3.5  
35
7 7 
7 
 
 or

10
2 2 
2
a
Classwork (p. 11.8)
b
Classwork
(a) No
(∵ 5 is an integer.)
(b) Yes
Classwork (p. 11.4)
1.
1 
1 
 or

1 
1
1 
9 3)
42  16 ,
16  4
(c) No
(∵
(b) 92  81 ,
81  9
(d) No
(∵ 0.16 3 is a recurring decimal. )
(a)

(e) Yes
(f) Yes
68
11 Rational and Irrational Numbers
Quick Practice
(c)
0.5  100
2.42  100
0 .5

2.42
Quick Practice 11.1 (p. 11.6)
(a) ∵
∴
(b) ∵
∴
82
< 80 <
92
80 lies between 8 and 9.
12 < 2.59 < 22
2.59 lies between 1 and 2.
∴
∴
∴
∴
5 is 2.
The integral part of

6
142 < 199 < 152

25
1
6

6
6
6

6
199 lies between 14 and 15.
199 is 14.
The integral part of
(b)
484  2  11
2
1
2
5

6
5

5
6
6

6
 22  112
 2  11
 22
(b)
25
121
Quick Practice 11.5 (p. 11.14)
5 lies between 2 and 3.
Quick Practice 11.3 (p. 11.11)
(a)

22 < 5 < 32
(a)
(b) ∵
50
242
121
5

11
Quick Practice 11.2 (p. 11.6)
(a) ∵

3600  22  22  32  52
6

5 6
6

30
6
 22  22  32  52
 2  2  3 5
Quick Practice 11.6 (p. 11.15)
 60
(a)
63  32  7
3 7
(c)
 0.25   25  0.01
 ( 25  0.01 )
(b)
 ( 5  0.1 )
2
2
 (5  0.1)

  0 .5

Quick Practice 11.4 (p. 11.12)
(a)
64

9

(b)
6

8
3


25
27
22  112
33
2  11
22

3 3
9
25
4
484
3 3
64
1

4
3
3
22 3
9
Quick Practice 11.7 (p. 11.18)
(a)
50  18  5 2  3 2
2 2
4

484

27
5
2
(b)
80  112  20  4 5  4 7  2 5
6 5 4 7
69
Math in Action (2nd Edition) 2B
(c)
Full Solutions
48  75  44  4 3  5 3  2 11
9  16  25
(b)
 9 3  2 11
 32  42  52
 32  42  52
(d)
7
 84 
3
28

3
7

3
3
 22  3  7 
3
2 7
2
3

3
 3 4  5
3
 60
21
2 21

 2 21 
3
3


(c)
21  6 21  2 21
3
 1.44
  144  0.01
 ( 144  0.01 )
 3 21
3
 ( 12 2  0.12 )
 (12  0.1)
  21
  1 .2
Quick Practice 11.8 (p. 11.18)
(d)
6  81  (  24 )   6  81  24
5.76
 576  0.01
  11 664
 9  64  0.01
  2 4  36
 32  82  0.12
 2 2  33
 32  82  0.12
  108
 3  8  0 .1
 2.4
Alternative Solution
6  81  ( 24 )   2  3  9  23  3
  2  3 9 2 2  3
2.
18
50
(a)
 9  2  2  3
9
25

  108
9

Quick Practice 11.9 (p. 11.19)
25
48  6  42  24  3  2  3  2  3  7

 4 3  ( 2  3)  2  3  7

4 3 2 3 7
2 3
3
5
32
800
(b)
4 3 7
1
25

 4 3 7
 4 21
1

25
Further Practice

1
5
Further Practice (p. 11.12)
1.
(a)
441
(c)
 32  7 2
 32  7 2
 3 7
 21
 5
1
16

81
16

81
16
9

4
70
11 Rational and Irrational Numbers
0.45
1.25
(d)
(d)
4 11
0.45  100
1.25  100

3


4 11
11
11
3  11

4  11
45

125
9
25

3

33
44

9

2.
25
3

5
(a) Yes
(b) Yes
(c) No
Further Practice (p. 11.15)
1.
3 8
 3  23
10
3
(a)

 3  22  2
 3 2  2
10
6 2
3

10

3
3
(d) No
3

10  3
3
 20

30
3
2 5
  22  5
2
(e) No
5
2 3
2
(b)
2


2 3
3

23
23

6
6


(f)

2
5 2
2
No

7
33

7
32  3

1
7

3
3

1
7
3


3
3
3

1
73

3
3
7
7

10

2
7
27
10


2
7
10
(c)
5

3
10
10
7  10
10
70
10

71
21
9
Math in Action (2nd Edition) 2B
Full Solutions
Further Practice (p. 11.19)
1.
 5  25  3  3  5 2
18  72
(a)
5  96  75
(c)
 5  4 2  3 5 3
 32  2  6 2  2
3 2 6 2
9 2
45  80
(b)
5  4 2  3

 32  5  42  5
5 3

4 5  2
5

4 10
5
3 5 4 5
 5
12  28  ( 7 )
(d)
  22  3  22  7  7
(c)
5 2
 2 3  2 7  7
72
2 8
3

62  2
5 2 
 2 22  2
3

6 2
5 2 
4 2
3
5 2 2 2 4 2
2 3
2 7 7
3
7
Exercise
3 2
Exercise 11A (p. 11.9)
2
 54 
3
(d)
2


3
3
27
2
Level 1
33
 33  2 
3

2

23
3  2
 3 3 2 
3
2

6
3 6
3 6 
3
2
1.
2

(b)
 0.4  
2
(c) 1.75 
7 6
6
2.
7
4
 3 14  2 2
 6 28
 6 22  7
 12 7
567
105
21

10 000 2000
(a)

2
 0 .0 4
45
(b)

(c)
 
34
 0.3 4
99
(d)

 32  14  23
(b)
4
2

10
5
(d) 0.0105 
126  8
(a)
2
3
2 6  18 6  9 6

6
2.
3 11

4 4
(a)

28
  3.1
9
 
89
  3. 2 9 6
27
7
92  7

3.
(a)
2
7

4  22
9 7
7
(b)
9
 81   92
 9
72
11 Rational and Irrational Numbers
144  122
(c)
2
(d) ∵
 12
 25
4.
∴
(a) ∵  169   132  13
∴ The square roots of 169 are 13.
∴
(a) ∵
∴
12 lies between 3 and 4.
∴
∴
10 is 3.
12. (a)
17 lies between 4 and 5.
∴ The integral part of
∴
(b)
83 lies between 9 and 10.
∴ The integral part of
83 is 9.
5
 1.25 and 7  2.645...
4
(c)
 8  2.828... and 12  3.464...
∴
Level 2
9.
(a) ∵  0.04   0.22  0.2
∴ The square roots of 0.04 are 0.2.
13. ∵
∴
2

16
4
4
   
49
7
7
 
∴ The square roots of
36 4 6 4
  
9
7 9 7
42  36

63
6

63
2

21
It is a rational number.
(b) ∵  0.64   0.82  0.8
∴ The square roots of 0.64 are 0.8.
(c) ∵
1
1 3
 1 .5  
3
3 2
29

6
11

6
It is a rational number.
∴
∵
1 1 1 2
  
4 2 4 4
1

4
It is a rational number.
17 is 4.
(c) ∵ 92 < 83 < 102
8.
200 is 14.
10 lies between 3 and 4.
∴

200 lies between 14 and 15.
∴ The integral part of
(b) ∵ 42 < 17 < 52
∵
179 is 13.
(c) ∵ 142 < 200 < 152
42
∴ The integral part of
7.
179 lies between 13 and 14.
∴ The integral part of
39 lies between 6 and 7.
< 10 <
150 is 12.
(b) ∵ 132 < 179 < 142
(b) ∵ 62 < 39 < 72
6.
150 lies between 12 and 13.
∴ The integral part of
(a) ∵ 32 < 12 < 42
32
4.37 lies between 2 and 3.
11. (a) ∵ 122 < 150 < 132
∴
∴
185 lies between 13 and 14.
(b) ∵ 22 < 4.37 < 32
(c) ∵  324   182  18
∴ The square roots of 324 are 18.
∴
64
8
are 
.
625
25
10. (a) ∵ 132 < 185 < 142
(b) ∵  225   152  15
∴ The square roots of 225 are 15.
5.
64
8
 8 
   
625
25
 25 
∴ The square roots of
625  252
(d)

16
4
are  .
49
7
73
8 16
 22   
 19
3 9
8
16
, S  19
P   22 , Q   , R 
9
3
Math in Action (2nd Edition) 2B
Full Solutions
Exercise 11B (p. 11.13)
Level 1
1.
10.
36

49

52  112  52  112
 5  11
36
49
6
7
 55
18
9

98
49
11. 
2.
 36  81   62  92
49
3

7
  54
3.
144  121  122  112
12.
2
 122  112
 12  11
1

4
9
4

9
4
 132
4.
3

2
 2 2  4 2  7 2  ( 2 2  4 2  7 2 )
 ( 2  4  7 )
13.  5
  56
5.
9

 ( 6 2  9 2 )
 (6  9)
4
49

9
9
49

16  25  49  42  52  7 2
9
 4 2  52  7 2
 45 7
7

3
 140
6.
14.
 1.96   196  0.01
1.44  100
0.49  100
1.44

0.49
 ( 196  0.01 )

144
49
 (14  0.1)

144
  1.4
49
12

7
 ( 142  0.12 )
7.
25  2.89  25  289  0.01
 52  289  0.01
2
1.21
1.21  100

2.25
2.25  100
15. 
 5  17  0.1
2
2
 5  17  0.1
 8.5
8.
0.01 0.09  0.01 0.01 9
121
225

121
225
11

15
 0.01  0.01  9
 0.01 32
 0.01 3
Level 2
 0.03
16.
9.

25  16  0.09  25  16  9  0.01
784  22  22  7 2
 25  16  9  0.01
 22  22  7 2
 2 27
 52  42  32  0.12
 28
 5  4  3  0.1
6
74
11 Rational and Irrational Numbers
17.  2304   22  22  22  22  32
2.
16
16

2
 ( 22  22  22  22  32 )
 (2  2  2  2  3)
2

2
2
16 2

2
  48
8 2
15 876  22  32  32  7 2
18.
2

7
3.
 22  32  32  7 2
 2  3 3 7
 126
2
7
2

7

7
1.25
1.25  100

1 .8
1.8  100
19.

125
180

25
36

0.63  100
0.28  100

63
28


9
4

9
5.

1 .5
1.5  100

0.54
0.54  100

6.
150
54

25
9

25
7.
Exercise 11C (p. 11.16)
Level 1

5

5

65
13
11
11

2
2
11
2


11  2
2

22
2
5
5

3
3
5


53
3

15
3
28  2 2  7
2 7
5
5
8.
50  2  52
5 2
5 5
5
 5
75
2

3
9
5
13
5  13
13

5

3
5
13

2
4
1.
5

3

2
21. 
14
7
13
5
6
0.63

0.28
20.


36


5
5

13
13
4.
25

7
27
7
3
3
Math in Action (2nd Edition) 2B
9.
Full Solutions
Level 2
 98   2  7 2
 7 2
10.
15.
27

8
8
23

3
3

2 2
3


27
8
33
23
3 3
2 2
3 3


18
18

8
8

16.
2  32

2
3 3 2

4
3 3
4

12.
2 2
27
33

4
4
11. 
2

3 6
4
175
175

12
12

23
3 2

2 2
3

2
52  7
22  3
5 7
2 3

5 7
3

2 3
13.
315

20


315
22  5
3 5 7
17.  5
2 5

14.
1
3 7
2


5 21
6
1
36

7
7

36

6
7

27
6
7

7
16

5 73
23
7
11
27

16
16


20
32  5  7
3
7
6 7

7
33
42
3 3
4
18. 
99
99

28
28

32  11
22  7

3 11

3 11
2 7

2 7
76

3 7  11
27

3 77
14
7
7
11 Rational and Irrational Numbers
19.
448

363
448
2 2 7 2 3 2  2 2
6.
6 2 5 3  3  6 2 6 3
7.
9 5  6 3  5  10 5  6 3
363
26  7


5.
3  11
2
23 7
11 3

8 7
3

11 3
8.
4 3
8 73

11  3

9.
8  18  2 2  3 2
 2
8 21
33
10.
20.
3  27  3  3 3
3
150  24  2  3  52  23  3
5 3.6
5 3.6  10

6 150 6 150  10
5 6 2 6
7 6
5 36

6 1500
11.
5 9

6 375
1

2 15
21.
3

2 5
15
2  15

15
30
2 5


15
15

3
12. 
5
5
 20  
2 5
7
7

 5  14 5
7

13 5
7
13. 2 2  6  2 2  6
 2 2 23
5
 2 2 3
5
4 3
3 5
25
14. 2 3  3 21  2  3  3  21
3 5
10
3  2.236 07

10
 0.6708 (cor. to 4 sig. fig.)

 6 3 3 7
 6  3 7
 18 7
15.
Exercise 11D (p. 11.19)
Level 1
1.
6
2
6
2

5
3

6 5 3 5

3
3
2
 6

2
2
2
 6
5
9

6
375
5
3
 
6
3  53


6
35  2 5  5  7  2 5
 5 7 2 5
2 3 5 3 7 3

2.
7 5 4 5 3 5
3.
5 7 3 7  2 7
4.
6 3  7 3  3  12 3
5 7
2 5
7

2
77
Math in Action (2nd Edition) 2B
16.
10 27

50

10 33
25
2
242
 6 3
3
3
22.
2
10  3  3
2

5 2

3
3
2  112
 6  3
3
6
11  2
3
 6  3

3
3
3
6 6

2

6
3  11  6
 6
3
3
3 6

6  3 6  33 6
3

29 6
3
6 3
2

2
2
36
75 6
3  52

 
5
3
5
3

6 5 3

5
3

3


17.
Full Solutions
3
3
23.  15  8  10   15  8  10
  1200
2 3
  2 4  3  52
18.
 22  5  3
49
108 7
2 2  33

 
3
6
3
6
  20 3
7 2 3 3
 
3
6
7
6
 
3 6 3

7

3 3

Alternative Solution
 15  8  10   3  5  2 2  2  5
 2  2  2  3  5  5
3
 2  2  5  3
3
  20 3
7 3
9
24.
28  35  20  28  35  20
 19 600
Level 2
19.
75  27  147  5 3  3 3  7 3
 2 4  52  7 2
 15 3
 22  5  7
 140
20.
486  96  24  2  3  2  3  2  3
5
5
3
Alternative Solution
 32  6  22  6  2 6
28  35  20  2 7  5  7  2 5
9 6 4 6 2 6
 2 2 55 7  7
7 6
21.
 2 25 7
 140
245  363  45  5  7 2  3  112  32  5
 7 5  11 3  3 5
25.
 4 5  11 3
12  ( 50 )  24  22  3  ( 2  52 )  23  3
 2 3  (5 2 )  (2  2  3 )

 10  2  3
2 2  3
 5
78
11 Rational and Irrational Numbers
26.
48  75  32  24  3  3  52  25


( a )2  (3 b )2
a  9b
∴ The two pairs of possible values of a and b:
a  18, b  2 or a  27, b  3
(or any other reasonable answers)
2
4 3
5 34 2
1

5 2

27.
a 3 b
34. ∵
 (2  3 )  5 3  (2  2 )
2
2
2
Revision Exercise 11 (p. 11. 23)
Level 1
2
10
1.
(a)
289  17 2
 17
2( 8  6)  2  8  2  6
2
(b)  256   16
  16
 16  12
42 3
(c)
28. 2 3 ( 15  3 5 )  2 3  15  2 3  3 5
 1.69   169  0.01
 ( 169  0.01 )
 2 45  6 15
 ( 132  0.12 )
 2  3 5  6 15
 (13  0.1)
 6 5  6 15
29.
  1.3
15 ( 3  5  6 )  15  3  15  5  15  6
(d)
 45  75  90
3.24
3.24  100

0.25
0.25  100
 3 5  5 3  3 25

324
25

324
 3 5  5 3  3 10
25
30. 3 7 ( 14  2 2  3 3 )

 3 7  14  3 7  2 2  3 7  3 3
18
5
 3 98  6 14  9 21
 3  7  2  6 14  9 21
2.
  21 2  6 14  9 21
(a) ∵
9  32  3
∴ The positive square root of 9 is 3.
(b) ∵
100  102  10
∴ The positive square root of 100 is 10.
2
2
31. ( 3  2 )( 3  2 )  ( 3 )  ( 2 )
 32
1
144  122  12
(c) ∵
∴ The positive square root of 144 is 12.
32. ( 2 6  3 3 ) 2  ( 2 6 ) 2  2  ( 2 6 )  (3 3 )  (3 3 ) 2
(d) ∵
196  142  14
∴ The positive square root of 196 is 14.
 2 2 ( 6 ) 2  12 18  32 ( 3 ) 2
 24  12  3  2  27
 51  36 2
3.
33. ∵
 2.5 4 is a recurring decimal.
8
64  82  8 
1
3.1415 is a terminating decimal.
∴
 2.5 4 ,
6  12  a  2  3  2 3  a
 2  32 3 a
 2  3 2  a
 6 2a
∴ a = 2 or a = 2  22 = 8
4.
 
∵
 
(a) ∵
∴
(or any other reasonable answers)
(b) ∵
∴
79
64 , 3.1415 are rational numbers.
82  71  92
71 lies between 8 and 9.
132  172  142
172 lies between 13 and 14.
Math in Action (2nd Edition) 2B
22  5.16  32
(c) ∵
∴
5.
∵
Full Solutions
5.16 lies between 2 and 3.
 11  3.316... and
2
2

5
5
12. 
2 2  52  2 2  52
 10
13.
25
5

10
5
7

6
7

7
16  81  42  92
 42  92
 49
36  4  121  6  2  11
2
8.
2
2
 62  22  112
 6  2  11
14.
15.
6

76
6

42
6
112  2 4  7
 22 7
16

6
3 5
48
16

147
49


45  32  5
 132
9.
6
6
 36
5
5

 25
7.

5
∴
6.
2

14  3.741...
4 7
49
42

7
16.
2
252  2 2  32  7
 2 3 7
4

7
10.
3
6 7
13
121

36
36

17.
27

12
121

36

112
6
11

6
11.
1

3
1
3



2
27
12
33
22  3
3 3
2 3
3

2
3
18.
3
3
4
31

9
9

3
3
31
9

31
3
19. 3 8  50  3 2 3  2  5 2
 3 2  2  5 2
 6 2 5 2
 2
80
11 Rational and Irrational Numbers
20. 2

2 53
 2 15
3

2 15  6 15
3

21.
1 1 2 1
 
3 6
6
1

6
∴ It is a rational number.
5
5
3
 60  2 

 22  3  5
3
3
3
(b) ∵
534
100
∴ It is a rational number.
8 15
3
2
2 17
 0.34  
7
7 50
100  119

350
219

350
∴ It is a rational number.
(d) ∵
15  6  90
 2  32  5
 3 10
22. 3 7  2 14  3  2  7  14
 6 98
 6 27
(e) It is not a rational number.
2
(f) ∵ ( 5 ) 3  5 5
∴ It is not a rational number.
 67 2
 42 2
23. 4 21  3 
27.
4 3 7
54
54

125
125
3

2.2  3.14  5.34 
(c) ∵
3

4 7
24.
14  2 28 


Level 2
25. (a) ∵
∴

27
2 7
2 2 7
2
4
28.
112  122  12 2
∴
6

3 30
25
13  181  14
5
32
5
25
5

2  2
2
5
166 is 12.

4 2

5
2
4 25

5
181 lies between 13 and 14.
181 is 13.
 

2. 0 5 is a rational number.
 
∴
5
2
32

5
5
122 is 11.
166 lies between 12 and 13.
2

3 65
55
122  166  132
∴ The integral part of
26. (a) ∵
3 6


122 lies between 11 and 12.
∴ The integral part of
(c) ∵
3 23
5 5
2 22  7

∴
53
5 5
∴ The integral part of
(b) ∵
2  33

4 3  7
2. 0 5
is also a rational number.
3
81
4 10
5
5
5
Math in Action (2nd Edition) 2B
29.
Full Solutions
4 350 4 350  10

5 6.4
5 6.4  10
35.
 ( 2 5  3 )(2 5 )
4 3500

5 64

( 2 5  3 )( 5  3 5 )
 ( 2 5 ) 2  3  2 5
  20  2 15
4 875
5 16
36. ∵

4
875

5
16

4
5 7

5
4
3
27
33
 3
a
a
33
 3 
3
a
 3 
45 5 7

5 4
3 3
a

 35
9 3
a
∴ a  3 or a  3  22  12
30.  108  4 27  5 5   22  33  4 33  5 5
(or any other reasonable answers)
 2  3  3  4  3  3  5 5
37. Each side of the square of area 27 m 2  27 m
 6 3  12 3  5 5
3 3 m
 6 3 5 5
31.
Each side of the square of area 48 m  48 m
2
4 3m
147  196  245  3  7 2  2 2  7 2  5  7 2
∴ Perimeter  [3(3 3 )  3(4 3 )  4 3  3 3 ] m
 7 3  2 7  7 5
 (9 3  12 3  3 ) m
 7 3  14  7 5
 22 3 m
32.  49  12  2 3  2 1764
Challenging Questions (p. 11.24)
 2 2 2  32  7 2
 ( 2  2  3  7 )
1.
  84
1
3 2

1
3 2


Alternative Solution
 49  12  2 3  7  2 3  2 3

 7  2  2  3
33. 2 12  45  75  2 2 2  3  32  5  3  5 2
2.
 2(2 3 )  3 5  5 3
2 2 3 3 5
( 3 )  ( 2 )2
2 3
32
Let
x  a 2 and
y b 2 .
a 2  b 2  98
a 2  b 2  2  72
2  2  3 5

5
34.
2 3
2
x  y  98
5 3

( 3  2 )( 3  2 )
2 3
  84

( 3  2)  ( 3  2)
(a  b)( 2 )  7 2
ab  7
∵ x and y are positive integers and x < y.
∴ a and b are positive integers and a < b.
∴ The values of a and b can be:
a  1, b  6
a  2, b  5
a  3, b  4
For a  1 and b  6, we have
x  1 2 and y  6 2
12 5
5
2 (4 2  8 )  2 (4 2  2 2 )
 2 (6 2 )
 6 2
 12
x 2
x2
y  36  2
y  72
y  72
82
11 Rational and Irrational Numbers
For a  2 and b  5, we have
x 2 2
and
y 5 2
x  22  2
y  52  2
x 8
y  50
x 8
y  50
For a  3 and b  4, we have
x 3 2
and
y 4 2
x  32  2
y  42  2
x  18
y  32
x  18
∴
y  32
All the pairs of values of x and y are (2, 72), (8, 50),
(18, 32).
83
Related documents