Download Section11.6notes

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
1
Section 11.6: Directional Derivatives and the Gradient Vector
Practice HW from Stewart Textbook (not to hand in)
p. 778 # 1-4
p. 799 # 4-15, 17, 19, 21, 29, 35, 37 odd
The Directional Derivative
Recall that
f x ( a, b) 
Slope of the tangent line to the surface at the
z

point (a, b, f (a, b)) in the x direction
x ( a,b)
f y ( a, b) 
z
y

Slope of the tangent line to the surface at the
point (a, b, f (a, b)) in the y direction
( a ,b )
Instead of restricting ourselves to the x and y axis, suppose we want to find a method for
finding the slope of the surface in any desired direction.
z
( x0 , y 0 , z 0 )
z  f ( x, y )
f y ( x0 , y 0 )  Slope in y dir
f x ( x0 , y 0 )  Slope in x dir
Du ( x0 , y 0 )  Slope in u dir
y0
y

x0
x
( x0 , y 0 ,0)
u  a, b 
2
Let u = < a, b > be the unit vector (a vector of length one) on the x-y plane which
indicates the direction we are moving. Then we define the following:
Definition of the Directional Derivative
The directional derivative of a function z = f (x, y) in the direction of the unit vector
u = < a, b >, denoted by Du f ( x, y ) , is defined the be the following:
Du f ( x, y )  f x ( x, y )a  f y ( x, y )b
Notes
1. Geometrically, the directional derivative is used to calculate the slope of the surface
z = f (x, y). That is, to calculate the slope of the surface at the point ( x0 , y0 , z 0 ) ,
where z 0  f ( x0 , y0 ) , we compute the following:
Slope of Surface at po int ( x0 , y0 , z 0 )
in direction of unit vector u  a.b 
 Du f ( x0 , y0 )  f x ( x0 , y0 )a  f y ( x0 , y0 )b
2. The vector u = < a, b > must be a unit vector. If we want to compute the directional
derivative of a function in the direction of the vector v and v is not a unit vector, we
compute
v
1
u

v.
|v| |v|
3. The direction of the unit vector u can be expressed in terms of the angle  between
the vector u and the x-axis. In this case, u  cos  , sin   (note, u is a unit vector
since | u | cos 2   sin 2   1  1 ) and the directional derivative can be expressed
as
Du f ( x, y )  f x ( x, y ) cos   f y ( x, y ) sin  .
4. Computationally, the directional derivative represents the rate of change of the
function f in the direction of the unit vector u.
3
Example 1: Find the directional derivative of the function f ( x, y )  3 y  4 xy  6 x at the

point (1, 2) in the direction of the unit vector that makes an angle of   radians with
3
the x-axis.
Solution:
█
4
Example 2: Find the directional derivative of the function f ( x, y )  3 y  4 xy  6 x at the
point (-3, -4) in the direction of the vector v  2i  3j .
Solution:
█
5
Gradient of a Function
Given a function of two variables z = f (x, y), the gradient vector, denoted by f ( x, y ) , is a
vector in the x-y plane denoted by
 f ( x, y )  f x ( x, y ) i  f y ( x, y ) j
Facts about Gradients
1. The directional derivative of the function z = f (x, y) in the direction of the unit vector
u = < a, b > can be expressed in terms of gradient using the dot product. That is,
Du f ( x, y )  f ( x, y )  u
 f x ( x, y ), f y ( x, y )    a, b 
 f x ( x, y )a  f y ( x, y )b
2. The gradient vector f ( x, y ) gives the direction of maximum increase of the surface
z = f (x, y). The length of the gradient vector is the maximum value of the directional
derivative (the maximum rate of change of f). That is,
Maximum Value of the Directiona l Derivative Du f ( x, y)  | f ( x, y) |
3. The negation of the gradient vector  f ( x, y ) gives the direction of maximum decrease.
of the surface z = f (x, y). The negation of the length of the gradient vector is the
minimum value of the directional derivative. That is,
Minimum Value of the Directiona l Derivative Du f ( x, y)   | f ( x, y) |
6
Example 3: Given the function f ( x, y )  y cos( x  y ) .
a. Find the gradient of f

b. Evaluate the gradient at the point P ( ,0) .
3
c. Use the gradient to find a formula for the directional derivative of f in the direction of the
3 4
vector u   ,  . Use the result to result to find the rate of change of f at P in the
5 5
direction of the vector u.
Solution:
█
7
Directional Derivative and Gradient for Functions of 3 variables
The directional derivative of a function f (x, y, z) of 3 variables in the direction of the
unit vector u = < a, b, c >, denoted by Du f ( x, y, z ) , is defined to be the following:
Du f ( x, y, z )  f x ( x, y, z )a  f y ( x, y, z )b  f z ( x, y, z )c
The gradient vector, denoted by f ( x, y, z ) , is a vector denoted by
 f ( x, y , z )  f x ( x, y , z ) i  f y ( x, y , z ) j  f z ( x, y , z ) k
8
Example 4: Find the gradient and directional derivative of f ( x, y, z)  5x 2  3xy  xyz at
P(1, 2, 4) in the direction of the point Q(-3, 1, 2).
Solution: We first compute the first order partial derivatives with respect to x, y, and z.
They are as follows.
f x ( x, y, z )  10 x  3 y(1)  yz (1)  10 x  3 y  yz
f y ( x, y, z )  0  3x(1)  xz(1)  3x  xz
f z ( x, y, z)  0  0  xy(1)  xy .
Then the formula for the gradient is computed as follows:
f ( x, y, z )  f x ( x, y, z ) i  f y ( x, y, z ) j  f z ( x, y, z ) k  (10 x  3 y  yz ) i  (3x  xz) j  xy k
Hence, at the point P(1, 2, 4), the gradient is
f (1,2,4)  (10(1)  3(2)  (2)( 4)) i  (3(1)  (1)( 4)) j  (1)( 2) k  12 i  j  2 k  12,1, 2 
To find the directional derivative, we must first find the unit vector u specifying the
direction at the point P(1, 2, 4) in the direction of the point Q(-3, 1, 2). To do this, we


find the vector v  PQ . This is found to be v  PQ  3  1,1  2,2  4  4,1,2  .
This must be a unit vector, so we compute the following:
u
1
v
|v|
1
(4)  (1)  (2)
2
2
2
 4,1,2 
1
21
 4,1,2  
4
21
,
1
21

Then, using the dot product formula involving the gradient for the directional derivative
and the results for the gradient at the point P(1,2,4) and u given above, we obtain
The directiona l derivative
at the po int P(1,24)
 Du f (1,2,4)  f (1,2,4)  u
 12, 1, 2    
4
 (12)( 


48
21
53
21

4
21
)  (1)( 
21
1
21

 11.6
4
21
,
1
1
)  2(
21
21
,
2
21
2

21
)
█
2
21

9
Example 5: Find the maximum rate of change of f ( x, y, z)  5x 2  3xy  xyz at the point
(1, 2, 4) and the direction in which it occurs.
Solution:
█
10
Normal Lines to Surfaces
Recall that z = f (x, y) gives a 3D surface in space. We want to form the following
functions of 3 variables
F ( x, y , z )  f ( x, y )  z
Note that the function F is obtained by moving all terms to one side of an equation and
setting them equal to zero. We use the following basic fact.
Fact: Given a point ( x0 , y0 , z 0 ) on a surface, the gradient of F at this point
F ( x0 , y 0 , z 0 )  Fx ( x0 , y 0 , z 0 ) i  Fy ( x0 , y 0 , z 0 ) j  Fz ( x0 , y 0 , z 0 ) k
is a vector orthogonal (normal) to the surface z  f ( x, y ) .
z
F ( x0 , y0 , z 0 )
z  f ( x, y )
( x0 , y 0 , z 0 )
y
x
11
Example 6: Find a unit normal vector to the surface x 2  y 2  z 2  9 at the point
(2, 1, 2)
Solution:
█
12
Tangent Planes
Using the gradient, we can find a equation of a plane tangent to a surface and a line normal
to a surface. Consider the following:
z
F ( x0 , y0 , z 0 )
z  f ( x, y )
( x0 , y 0 , z 0 )
y
x
Recall that to write equation of a plane, we need a point on the plane and a normal vector.
Since F ( x0 , y 0 , z 0 )  Fx ( x0 , y 0 , z 0 ), Fy ( x0 , y 0 , z 0 ), Fz ( x0 , y 0 , z 0 )  represents a
normal vector to the surface (and the tangent plane), its components can be used to write
the equation of the tangent plane at the point ( x0 , y0 , z0 ) . The equation of the tangent plane
is given as follows:
Fx ( x0 , y 0 , z 0 )( x  x0 )  Fy ( x0 , y 0 , z 0 )( y  y 0 )  Fz ( x0 , y 0 , z 0 )( z  z 0 )  0 .
Recall, to write the equation of a line in 3D space, we need a point and a parallel vector.
Since F ( x0 , y 0 , z 0 )  Fx ( x0 , y 0 , z 0 ), Fy ( x0 , y 0 , z 0 ), Fz ( x0 , y 0 , z 0 )  is a vector normal
to the surface, it would be parallel to any line normal to the surface at ( x0 , y0 , z0 ) . Thus,
the parametric equations of the normal line are:
x  x0  Fx ( x0 , y0 , z 0 )t , y  y 0  Fy ( x0 , y 0 , z 0 )t , z  z 0  Fz ( x0 , y0 , z 0 )t
13
We summarize these results as follows.
Tangent Plane and Normal Line Equations to a Surface
Given a surface z = f (x, y) in 3D, form the function F ( x, y, z )  f ( x, y )  z of three
variables. Then the equation of the tangent plane to the surface z = f (x, y) at the point
( x0 , y0 , z0 ) is given by
Fx ( x0 , y 0 , z 0 )( x  x0 )  Fy ( x0 , y 0 , z 0 )( y  y 0 )  Fz ( x0 , y 0 , z 0 )( z  z 0 )  0 .
The parametric equations of the normal line through the point ( x0 , y0 , z0 ) are given by
x  x0  Fx ( x0 , y0 , z 0 )t , y  y 0  Fy ( x0 , y 0 , z 0 )t , z  z 0  Fz ( x0 , y0 , z 0 )t
Note: Recall that to find the symmetric equations of a line, take the parametric equations,
solve for t, and set the results equal.
14
Example 7: Find the equation of the tangent plane and the parametric and symmetric
equations for the normal line to the surface x 2  y 2  z 2  9 at the point (2, 1, 2).
Solution:
█
15
Note: The following graph using Maple shows the graph of the sphere x 2  y 2  z 2  9
with the tangent plane and normal line at the point (2, 1, 2).
16
Example 8: Find the equation of the tangent plane and the parametric and symmetric
2
2
1
equations for the normal line to the surface f ( x, y )  e  x  y at the point (0,1, ) .
e
Solution: We start by setting z  e  x
2
 y2
and computing the function of 3 variables
F ( x, y , z )  f ( x, y )  z  e  x
2
 y2
z
Recall that to get an equation of any plane, including a tangent plane, we need a point and
1
a normal vector. We are given the point (0,1, ) . The normal vector comes from
e
computing the gradient vector of F at this point. Recall that for a given point
( x0 , y0 , z 0 ) , the gradient vector at this point is given by the formula
F ( x0 , y 0 , z 0 )  Fx ( x0 , y 0 , z 0 ) i  Fy ( x0 , y 0 , z 0 ) j  Fz ( x0 , y 0 , z 0 ) k
Computing the necessary partial derivatives, we obtain
Fx ( x, y, z)  2 xe x
2
 y2
 0  2 xe x
2
 y2
Fy ( x, y, z )  2 ye  x
2
 y2
 0  2 ye  x
2
 y2
Fz ( x, y, z)  0  1  1
1
The given point is ( x0 , y 0 , z 0 )  (0,1, ) . Thus, since
e
2
2
1
Fx ( x0 , y 0 , z 0 )  Fx (0,1, )  2(0)e  (0)  (1)  0 ,
e
2
2
1
2
Fy ( x0 , y 0 , z 0 )  F y (0,1, )  2(1)e  (0)  (1)  2e 1   , and
e
e
1
Fz ( x0 , y 0 , z 0 )  F (0,1, )  1 ,
e
1
the gradient vector of F at the point (0,1, ) is
e
1
1
1
F (0,1, )  0 i  (1) j  k  j  k
e
e
e
We use the components of the gradient vector to write the equation of the tangent plane
using the formula
(continued on next page)
17
Fx ( x0 , y 0 , z 0 )( x  x0 )  Fy ( x0 , y 0 , z 0 )( y  y 0 )  Fz ( x0 , y 0 , z 0 )( z  z 0 )  0
1
At the point ( x0 , y 0 , z 0 )  (0,1, ) , this formula becomes
e
1
1
1
1
Fx (0,1, )( x  0)  Fy (0,1, )( y  1)  Fz (0,1, )( z  )  0
e
e
e
e
Using the calculations for the partial derivatives given on the previous page, this equation
becomes
2
1
(0)( x  0)  ( )( y  1)  (1)( z  )  0
e
e
or

2
1
( y  1)  ( z  )  0
e
e
We can expand this equation to get it in general form. Doing this gives

2
2
1
y z 0
e
e
e
and when combining like terms, we have the equation of the tangent plane

2
3
y z   0.
e
e
The parametric equations of the normal line through the point ( x0 , y0 , z0 ) are given by
x  x0  Fx ( x0 , y0 , z 0 )t , y  y 0  Fy ( x0 , y 0 , z 0 )t , z  z 0  Fz ( x0 , y0 , z 0 )t
1
Using the calculations we computed above where that ( x0 , y 0 , z 0 )  (0,1, ) ,
e
1
1
2
Fx ( x0 , y 0 , z 0 )  Fx (0,1, )  0 , Fy ( x0 , y 0 , z 0 )  F y (0,1, )   , and
e
e
e
1
Fz ( x0 , y 0 , z 0 )  F (0,1, )  1 , we obtain
e
2
1
x  0  (0)t , y  1  (  )t , z   (1)t
e
e
which, when simplified, gives
(continued on next page)
18
2
1
x  0, y  1 t , z   t
e
e
If we want to convert this these equations to symmetric form, we can take the last two
y 1
y  1/ e
equations of the previous result and solve for t. This gives t 
and t 
.
 2/e
1
Equation gives the symmetric equations of the normal line.
y 1
y  1/ e

 2/e
1
The following displays the graph of the function f ( x, y )  e  x
1
and the normal line at the point (0,1, ) .
e
2
 y2
, the tangent plane,
█
Related documents