• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
notes
notes

PowerPoint-presentatie
PowerPoint-presentatie

Continuous Model Theory - Math @ McMaster University
Continuous Model Theory - Math @ McMaster University

... We fix a language L and a complete theory T in this language. For a tuple of sorts S from L, we define the set SS (T ) to be all complete types defined on FS . The logic topology on SS (T ) is the restriction of the weak-* topology on the dual space of FS . Equivalently, the collection of sets {p ∈ ...
Notes
Notes

... does it. This is a function that takes a pair of functions as its argument and returns their composition. The proof tree that establishes the typing of this function is essentially an intuitionistic proof of the transitivity of implication. Here is another example. Consider the formula ∀P, Q, R . (P ...
PDF
PDF

Propositions as types
Propositions as types

... think of ¬φ as corresponding to a function τ → 0. We have seen functions that accept a type and don’t return a value before: continuations have that behavior. If φ corresponds to τ , a reasonable interpretation of ¬φ is as a continuation expecting a τ . Negation corresponds to turning outputs into i ...
Lecture 39 Notes
Lecture 39 Notes

PDF
PDF

Notes
Notes

a first atempt to full descriptions of the new class
a first atempt to full descriptions of the new class

... Scope note: ...
Lecture 10 Notes
Lecture 10 Notes

PDF
PDF

... 3. We will in due course explore the notion of constructive “truth” or evidence. We will see that we can’t decide whether there is evidence for a given proposition, i.e. whether a programming task is solvable. 4. The notion of evidence/truth depends on a theory of types and programs which we are gra ...
< 1 ... 6 7 8 9 10

Intuitionistic type theory

Intuitionistic type theory (also known as constructive type theory, or Martin-Löf type theory) is a type theory and an alternative foundation of mathematics based on the principles of mathematical constructivism. Intuitionistic type theory was introduced by Per Martin-Löf, a Swedish mathematician and philosopher, in 1972. Martin-Löf has modified his proposal a few times; his 1971 impredicative formulation was inconsistent as demonstrated by Girard's paradox. Later formulations were predicative. He proposed both intensional and extensional variants of the theory. For more detail see the section on Martin-Löf type theories below.Intuitionistic type theory is based on a certain analogy or isomorphism between propositions and types: a proposition is identified with the type of its proofs. This identification is usually called the Curry–Howard isomorphism, which was originally formulated for intuitionistic logic and simply typed lambda calculus. Type theory extends this identification to predicate logic by introducing dependent types, that is types which contain values.Type theory internalizes the interpretation of intuitionistic logic proposed by Brouwer, Heyting and Kolmogorov, the so-called BHK interpretation. The types in type theory play a similar role to sets in set theory but functions definable in type theory are always computable.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report