QUANTUM ENTANGLEMENT STATE OF NON
... From the physical point of view, it is interesting to realize the reversible conditions between three-level atoms in cascade configuration in resonance with two cavity modes. This system has more degrees of freedom in the atom transitions description and behavior of bimodal cavity field in compariso ...
... From the physical point of view, it is interesting to realize the reversible conditions between three-level atoms in cascade configuration in resonance with two cavity modes. This system has more degrees of freedom in the atom transitions description and behavior of bimodal cavity field in compariso ...
Free-electron Model for Mesoscopic Force Fluctuations in Nanowires
... In a recent pioneering experiment by Rubio, Agrait, and Vieira18 , following earlier attempts19–22 , the force and the conductance were simultaneously measured during elongation, from formation to rupture, of a gold nanowire. They show that the stepwise variation of the conductance is always accompa ...
... In a recent pioneering experiment by Rubio, Agrait, and Vieira18 , following earlier attempts19–22 , the force and the conductance were simultaneously measured during elongation, from formation to rupture, of a gold nanowire. They show that the stepwise variation of the conductance is always accompa ...
Instructional Targets Unit I Motion and Stability: Forces and their
... PS3.A: Energy is quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that system’s total energy is conserved, even as, within the system, energy is continually trans ...
... PS3.A: Energy is quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that system’s total energy is conserved, even as, within the system, energy is continually trans ...
Creation of multiple electron-positron pairs in arbitrary fields
... this approach has already provided some insights into various conceptual problems such as the Klein paradox 关26–29兴, the Zitterbewegung 关30–32兴, the electron localization, and the dynamics of the formation of bound states in supercritical fields 关33兴. We will present an exact theoretical framework t ...
... this approach has already provided some insights into various conceptual problems such as the Klein paradox 关26–29兴, the Zitterbewegung 关30–32兴, the electron localization, and the dynamics of the formation of bound states in supercritical fields 关33兴. We will present an exact theoretical framework t ...
Part II: Applications of plate and shell theories
... In the yield line theory, the plate is assumed to yield along the so called yield lines so that the plate becomes a mechanism with one degree of freedom. The internal virtual work done by the bending moments at the yield lines as well as the virtual work done by the external load, the sum of which m ...
... In the yield line theory, the plate is assumed to yield along the so called yield lines so that the plate becomes a mechanism with one degree of freedom. The internal virtual work done by the bending moments at the yield lines as well as the virtual work done by the external load, the sum of which m ...
Casimir effect
In quantum field theory, the Casimir effect and the Casimir–Polder force are physical forces arising from a quantized field. They are named after the Dutch physicist Hendrik Casimir.The typical example is of two uncharged metallic plates in a vacuum, placed a few nanometers apart. In a classical description, the lack of an external field means that there is no field between the plates, and no force would be measured between them. When this field is instead studied using the QED vacuum of quantum electrodynamics, it is seen that the plates do affect the virtual photons which constitute the field, and generate a net force—either an attraction or a repulsion depending on the specific arrangement of the two plates. Although the Casimir effect can be expressed in terms of virtual particles interacting with the objects, it is best described and more easily calculated in terms of the zero-point energy of a quantized field in the intervening space between the objects. This force has been measured and is a striking example of an effect captured formally by second quantization. However, the treatment of boundary conditions in these calculations has led to some controversy.In fact, ""Casimir's original goal was to compute the van der Waals force between polarizable molecules"" of the metallic plates. Thus it can be interpreted without any reference to the zero-point energy (vacuum energy) of quantum fields.Dutch physicists Hendrik B. G. Casimir and Dirk Polder at Philips Research Labs proposed the existence of a force between two polarizable atoms and between such an atom and a conducting plate in 1947, and, after a conversation with Niels Bohr who suggested it had something to do with zero-point energy, Casimir alone formulated the theory predicting a force between neutral conducting plates in 1948; the former is called the Casimir–Polder force while the latter is the Casimir effect in the narrow sense. Predictions of the force were later extended to finite-conductivity metals and dielectrics by Lifshitz and his students, and recent calculations have considered more general geometries. It was not until 1997, however, that a direct experiment, by S. Lamoreaux, described above, quantitatively measured the force (to within 15% of the value predicted by the theory), although previous work [e.g. van Blockland and Overbeek (1978)] had observed the force qualitatively, and indirect validation of the predicted Casimir energy had been made by measuring the thickness of liquid helium films by Sabisky and Anderson in 1972. Subsequent experiments approach an accuracy of a few percent.Because the strength of the force falls off rapidly with distance, it is measurable only when the distance between the objects is extremely small. On a submicron scale, this force becomes so strong that it becomes the dominant force between uncharged conductors. In fact, at separations of 10 nm—about 100 times the typical size of an atom—the Casimir effect produces the equivalent of about 1 atmosphere of pressure (the precise value depending on surface geometry and other factors).In modern theoretical physics, the Casimir effect plays an important role in the chiral bag model of the nucleon; in applied physics, it is significant in some aspects of emerging microtechnologies and nanotechnologies.Any medium supporting oscillations has an analogue of the Casimir effect. For example, beads on a string as well as plates submerged in noisy water or gas illustrate the Casimir force.