• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Physics 221 Second Hourly Examination Prepared August 2006
Physics 221 Second Hourly Examination Prepared August 2006

Slide 1
Slide 1

Physics B Targets with terms
Physics B Targets with terms

dynamics and acceleration in linear structures
dynamics and acceleration in linear structures

On the Theory of Intramolecular Energy Transfer
On the Theory of Intramolecular Energy Transfer

Electromagnetism Laws and Equations
Electromagnetism Laws and Equations

HOW TO DEAL WITH THE ARROW OF TIME GIUSEPPE VITIELLO
HOW TO DEAL WITH THE ARROW OF TIME GIUSEPPE VITIELLO

No Slide Title
No Slide Title

Lec. 42 notes
Lec. 42 notes

... When E>V (everywhere) you have a free particle. We deal with the case of V=0 but it can be applied to other cases as well. Free particles have oscillating solutions or To get the full wave function we multiply by the time dependence: ...
Capacitance and Dielectrics
Capacitance and Dielectrics

Multiphoton ionization of hydrogen in parallel simulations
Multiphoton ionization of hydrogen in parallel simulations

Barad_On Touching--The Inhuman That Therefore I Am (v1.1)
Barad_On Touching--The Inhuman That Therefore I Am (v1.1)

04AP_Physics_C_
04AP_Physics_C_

On the radiation by a charge in a material medium
On the radiation by a charge in a material medium

introduction atomic spectra - University of California, Berkeley
introduction atomic spectra - University of California, Berkeley

The Quantized Hall Effect - University of California, Berkeley
The Quantized Hall Effect - University of California, Berkeley

Functional RG for few
Functional RG for few

Chap. 4 - PhysicsEducation.net
Chap. 4 - PhysicsEducation.net

PHYS 212 – MT2 Summer 2012 Sample 2
PHYS 212 – MT2 Summer 2012 Sample 2

pdf - arXiv
pdf - arXiv

Wilson-Sommerfeld quantization rule revisited
Wilson-Sommerfeld quantization rule revisited

Survival Needs… Food
Survival Needs… Food

Solving Schrödinger`s equation around a desired energy
Solving Schrödinger`s equation around a desired energy

... kinetic energy cutoff of 4.5 Ry is used throughout the calculations. For the largest system this corresponds to a basis set of 100 000 orbitals. The reference energy Eref of Eq. (2) is obtained by perform~ng first conventional calculations [Eq. (1)] on small quantum dots and using this €ref for all ...
幻灯片 1
幻灯片 1

... other observer moving with constant velocity relative to the ...
An Alternative View of the Fine Structure Constant and its Drift
An Alternative View of the Fine Structure Constant and its Drift

< 1 ... 40 41 42 43 44 45 46 47 48 ... 139 >

Casimir effect



In quantum field theory, the Casimir effect and the Casimir–Polder force are physical forces arising from a quantized field. They are named after the Dutch physicist Hendrik Casimir.The typical example is of two uncharged metallic plates in a vacuum, placed a few nanometers apart. In a classical description, the lack of an external field means that there is no field between the plates, and no force would be measured between them. When this field is instead studied using the QED vacuum of quantum electrodynamics, it is seen that the plates do affect the virtual photons which constitute the field, and generate a net force—either an attraction or a repulsion depending on the specific arrangement of the two plates. Although the Casimir effect can be expressed in terms of virtual particles interacting with the objects, it is best described and more easily calculated in terms of the zero-point energy of a quantized field in the intervening space between the objects. This force has been measured and is a striking example of an effect captured formally by second quantization. However, the treatment of boundary conditions in these calculations has led to some controversy.In fact, ""Casimir's original goal was to compute the van der Waals force between polarizable molecules"" of the metallic plates. Thus it can be interpreted without any reference to the zero-point energy (vacuum energy) of quantum fields.Dutch physicists Hendrik B. G. Casimir and Dirk Polder at Philips Research Labs proposed the existence of a force between two polarizable atoms and between such an atom and a conducting plate in 1947, and, after a conversation with Niels Bohr who suggested it had something to do with zero-point energy, Casimir alone formulated the theory predicting a force between neutral conducting plates in 1948; the former is called the Casimir–Polder force while the latter is the Casimir effect in the narrow sense. Predictions of the force were later extended to finite-conductivity metals and dielectrics by Lifshitz and his students, and recent calculations have considered more general geometries. It was not until 1997, however, that a direct experiment, by S. Lamoreaux, described above, quantitatively measured the force (to within 15% of the value predicted by the theory), although previous work [e.g. van Blockland and Overbeek (1978)] had observed the force qualitatively, and indirect validation of the predicted Casimir energy had been made by measuring the thickness of liquid helium films by Sabisky and Anderson in 1972. Subsequent experiments approach an accuracy of a few percent.Because the strength of the force falls off rapidly with distance, it is measurable only when the distance between the objects is extremely small. On a submicron scale, this force becomes so strong that it becomes the dominant force between uncharged conductors. In fact, at separations of 10 nm—about 100 times the typical size of an atom—the Casimir effect produces the equivalent of about 1 atmosphere of pressure (the precise value depending on surface geometry and other factors).In modern theoretical physics, the Casimir effect plays an important role in the chiral bag model of the nucleon; in applied physics, it is significant in some aspects of emerging microtechnologies and nanotechnologies.Any medium supporting oscillations has an analogue of the Casimir effect. For example, beads on a string as well as plates submerged in noisy water or gas illustrate the Casimir force.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report