• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Geometry Ch 1 Notes
Geometry Ch 1 Notes

Unit 7: Transformations in the Coordinate Plane
Unit 7: Transformations in the Coordinate Plane

ExamReviewSheet.Dec 2016.INK
ExamReviewSheet.Dec 2016.INK

ExamReviewSheet.Dec2016INK
ExamReviewSheet.Dec2016INK

Undefined Terms, Definitions, Postulates, Segments, and Angles
Undefined Terms, Definitions, Postulates, Segments, and Angles

Semester Exam Review - Chagrin Falls Schools
Semester Exam Review - Chagrin Falls Schools

File
File

Semester Exam Review - Chagrin Falls Schools
Semester Exam Review - Chagrin Falls Schools

B1 Regents – Prove Basic Geometry Theorems by Direct Proofs
B1 Regents – Prove Basic Geometry Theorems by Direct Proofs

Definitions - WordPress.com
Definitions - WordPress.com

Math Analysis Handout
Math Analysis Handout

MATH - Amazon Web Services
MATH - Amazon Web Services

UNIT 1
UNIT 1

Chapter 2 - Catawba County Schools
Chapter 2 - Catawba County Schools

3.5 Proving Lines Parallel Objectives
3.5 Proving Lines Parallel Objectives

LESSON 1-1: Points Lines and Planes UNDEFINED TERMS OF
LESSON 1-1: Points Lines and Planes UNDEFINED TERMS OF

DEFINITIONS, POSTULATES, AND THEOREMS
DEFINITIONS, POSTULATES, AND THEOREMS

Semester Test Review #1 I can use the term equidistant. #2 I can
Semester Test Review #1 I can use the term equidistant. #2 I can

Geometry Chapter 1 Foundations Lesson 1
Geometry Chapter 1 Foundations Lesson 1

3.1 Notes Answers
3.1 Notes Answers

Unit 1 Student Notes - Mattawan Consolidated School
Unit 1 Student Notes - Mattawan Consolidated School

3-D Figures
3-D Figures

Construction 12: Construct a circle circumscribed about a triangle. 1
Construction 12: Construct a circle circumscribed about a triangle. 1

Non-Euclidean Geometries
Non-Euclidean Geometries

Geometry Review Packet for
Geometry Review Packet for

< 1 ... 15 16 17 18 19 20 21 22 23 ... 37 >

Projective plane



In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional ""points at infinity"" where parallel lines intersect. Thus any two lines in a projective plane intersect in one and only one point.Renaissance artists, in developing the techniques of drawing in perspective, laid the groundwork for this mathematical topic. The archetypical example is the real projective plane, also known as the extended Euclidean plane. This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by PG(2, R), RP2, or P2(R) among other notations. There are many other projective planes, both infinite, such as the complex projective plane, and finite, such as the Fano plane.A projective plane is a 2-dimensional projective space, but not all projective planes can be embedded in 3-dimensional projective spaces. The embedding property is a consequence of a result known as Desargues' theorem.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report