Modification of Newton`s law of gravity at very large distances
... where b is the baryon number and Λ defines a characteristic scale r0 ∼ 1/Λ ∼ 5 kpc on which this potential starts to dominate over gravity. This model contains basic features of MOND (at least roughly) but fails when confronting with gravitational lensing by clusters. To explain lensing this extra f ...
... where b is the baryon number and Λ defines a characteristic scale r0 ∼ 1/Λ ∼ 5 kpc on which this potential starts to dominate over gravity. This model contains basic features of MOND (at least roughly) but fails when confronting with gravitational lensing by clusters. To explain lensing this extra f ...
How many galaxies are there in the Universe?
... This worksheet is adapted from an undergraduate exercise at http://cosmos.phy.tufts.edu/~zirbel/laboratories/HDF.pdf This picture was taken with the Hubble Space Telescope, and it is known as the Hubble ultra-deep field. The image results from an observation taken with the telescope trained on one t ...
... This worksheet is adapted from an undergraduate exercise at http://cosmos.phy.tufts.edu/~zirbel/laboratories/HDF.pdf This picture was taken with the Hubble Space Telescope, and it is known as the Hubble ultra-deep field. The image results from an observation taken with the telescope trained on one t ...
AS 60 - Astronomy of the Americas
... a. As you watch it over the course of a year, an approaching galaxy will appear to grow larger in angular size on the sky b. Spectral lines of elements will be observed in the galaxy’s spectrum at greater wavelengths than those for the same elements in the lab if a galaxy is receding from us c. Spec ...
... a. As you watch it over the course of a year, an approaching galaxy will appear to grow larger in angular size on the sky b. Spectral lines of elements will be observed in the galaxy’s spectrum at greater wavelengths than those for the same elements in the lab if a galaxy is receding from us c. Spec ...
Formation of the Universe
... “In the very beginning, there was a void, a curious form of vacuum, nothingness containing no space, no time, no matter, no light, no sound. Yet the laws of nature were in place and this curious vacuum held potential. A story logically begins at the beginning, but this story is about the universe a ...
... “In the very beginning, there was a void, a curious form of vacuum, nothingness containing no space, no time, no matter, no light, no sound. Yet the laws of nature were in place and this curious vacuum held potential. A story logically begins at the beginning, but this story is about the universe a ...
Galaxy Formation, Theory and Modelling
... comparable to that from WMAP+ estimates. • The values do not agree, with WMAP3+ preferring (Spergel et al 2007) s 8 0.75 0.05 • If the method is robust we should get consistent results for datasets with different luminosity and colour selections. ...
... comparable to that from WMAP+ estimates. • The values do not agree, with WMAP3+ preferring (Spergel et al 2007) s 8 0.75 0.05 • If the method is robust we should get consistent results for datasets with different luminosity and colour selections. ...
Sample Exam 3
... C) The redshifts of nearby objects are not caused by the expansion of the universe. D) Stars don’t move, so we can’t measure a velocity for them. E) It can be used to find the distances of nearby stars. 22) Observations today suggest that spacetime in our universe is closest to being A) curved with ...
... C) The redshifts of nearby objects are not caused by the expansion of the universe. D) Stars don’t move, so we can’t measure a velocity for them. E) It can be used to find the distances of nearby stars. 22) Observations today suggest that spacetime in our universe is closest to being A) curved with ...
Dark matter
Dark matter is a hypothetical kind of matter that cannot be seen with telescopes but would account for most of the matter in the universe. The existence and properties of dark matter are inferred from its gravitational effects on visible matter, on radiation, and on the large-scale structure of the universe. Dark matter has not been detected directly, making it one of the greatest mysteries in modern astrophysics.Dark matter neither emits nor absorbs light or any other electromagnetic radiation at any significant level. According to the Planck mission team, and based on the standard model of cosmology, the total mass–energy of the known universe contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy. Thus, dark matter is estimated to constitute 84.5% of the total matter in the universe, while dark energy plus dark matter constitute 95.1% of the total mass–energy content of the universe.Astrophysicists hypothesized the existence of dark matter to account for discrepancies between the mass of large astronomical objects determined from their gravitational effects, and their mass as calculated from the observable matter (stars, gas, and dust) that they can be seen to contain. Their gravitational effects suggest that their masses are much greater than the observable matter survey suggests. Dark matter was postulated by Jan Oort in 1932, albeit based upon insufficient evidence, to account for the orbital velocities of stars in the Milky Way. In 1933, Fritz Zwicky was the first to use the virial theorem to infer the existence of unseen matter, which he referred to as dunkle Materie 'dark matter'. More robust evidence from galaxy rotation curves was discovered by Horace W. Babcock in 1939, but was not attributed to dark matter. The first hypothesis to postulate ""dark matter"" based upon robust evidence was formulated by Vera Rubin and Kent Ford in the 1960s–1970s, using galaxy rotation curves. Subsequently, many other observations have indicated the presence of dark matter in the universe, including gravitational lensing of background objects by galaxy clusters such as the Bullet Cluster, the temperature distribution of hot gas in galaxies and clusters of galaxies and, more recently, the pattern of anisotropies in the cosmic microwave background. According to consensus among cosmologists, dark matter is composed primarily of a not yet characterized type of subatomic particle.The search for this particle, by a variety of means, is one of the major efforts in particle physics today.Although the existence of dark matter is generally accepted by the mainstream scientific community, some alternative theories of gravity have been proposed, such as MOND and TeVeS, which try to account for the anomalous observations without requiring additional matter. However, these theories cannot account for the properties of galaxy clusters.