
FSL206MR Green Mode Fairchild Power Switch (FPS™) Features
... Overload is defined as the load current exceeding a preset level due to an unexpected event. In this situation, the protection circuit should be activated to protect the SMPS. However, even when the SMPS is operating normally, the overload protection (OLP) circuit can be activated during the load tr ...
... Overload is defined as the load current exceeding a preset level due to an unexpected event. In this situation, the protection circuit should be activated to protect the SMPS. However, even when the SMPS is operating normally, the overload protection (OLP) circuit can be activated during the load tr ...
LP3985 - Texas Instruments
... The Absolute Maximum power dissipation depends on the ambient temperature and can be calculated using the formula: PD = (TJ TA)/RθJA,where TJ is the junction temperature, TA is the ambient temperature, and RθJA is the junction-to-ambient thermal resistance. The 364-mW rating for SOT23-5 appearing un ...
... The Absolute Maximum power dissipation depends on the ambient temperature and can be calculated using the formula: PD = (TJ TA)/RθJA,where TJ is the junction temperature, TA is the ambient temperature, and RθJA is the junction-to-ambient thermal resistance. The 364-mW rating for SOT23-5 appearing un ...
a Increment/Decrement Digital Potentiometer AD5220
... INL and DNL are measured at V W with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. V A = V DD and VB = 0 V. DNL specification limits of ± 1 LSB maximum are guaranteed monotonic operating conditions. See Figure 28 test circuit. ...
... INL and DNL are measured at V W with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. V A = V DD and VB = 0 V. DNL specification limits of ± 1 LSB maximum are guaranteed monotonic operating conditions. See Figure 28 test circuit. ...
General Description Features
... The MAX12553 is a 3.3V, 14-bit, 65Msps analog-to-digital converter (ADC) featuring a fully differential wideband track-and-hold (T/H) input amplifier, driving a low-noise internal quantizer. The analog input stage accepts singleended or differential signals. The MAX12553 is optimized for low-power, ...
... The MAX12553 is a 3.3V, 14-bit, 65Msps analog-to-digital converter (ADC) featuring a fully differential wideband track-and-hold (T/H) input amplifier, driving a low-noise internal quantizer. The analog input stage accepts singleended or differential signals. The MAX12553 is optimized for low-power, ...
BDTIC ICL8001G www.BDTIC.com/infineon Single-Stage Flyback And
... In ICL8001G, a high voltage startup cell is integrated. As shown in Figure 2, the start cell consists of a high voltage device and a controller, whereby the high voltage device is controlled by the controller. The startup cell provides a pre-charging of the VCC capacitor till VCC voltage reaches the ...
... In ICL8001G, a high voltage startup cell is integrated. As shown in Figure 2, the start cell consists of a high voltage device and a controller, whereby the high voltage device is controlled by the controller. The startup cell provides a pre-charging of the VCC capacitor till VCC voltage reaches the ...
MAX1209 12-Bit, 80Msps, 3.3V IF-Sampling ADC General Description Features
... The MAX1209 is a 3.3V, 12-bit, 80Msps analog-to-digital converter (ADC) featuring a fully differential wideband track-and-hold (T/H) input amplifier, driving a low-noise internal quantizer. The analog input stage accepts single-ended or differential signals. The MAX1209 is optimized for low power, s ...
... The MAX1209 is a 3.3V, 12-bit, 80Msps analog-to-digital converter (ADC) featuring a fully differential wideband track-and-hold (T/H) input amplifier, driving a low-noise internal quantizer. The analog input stage accepts single-ended or differential signals. The MAX1209 is optimized for low power, s ...
High Brightness LED Current Regulator A6260
... The A6260 is a linear current regulator that is designed to provide drive current and protection for series-connected, high brightness LEDs in automotive applications. It provides programmable current output at load voltages up to 3 V below the main supply voltage. For automotive applications optimu ...
... The A6260 is a linear current regulator that is designed to provide drive current and protection for series-connected, high brightness LEDs in automotive applications. It provides programmable current output at load voltages up to 3 V below the main supply voltage. For automotive applications optimu ...
FEATURES
... Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absol ...
... Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absol ...
TS3005 - Silicon Labs
... period is approximately 715.88 minutes with a 50% duty cycle. As design aids, Tables 2 lists TS3004’s typical FOUT period for various standard values for RSET and FDIV2:0 = 111(7). The output period can be user-adjusted from 1.7ms to 33hrs without additional components. Frequency divider inputs FDIV ...
... period is approximately 715.88 minutes with a 50% duty cycle. As design aids, Tables 2 lists TS3004’s typical FOUT period for various standard values for RSET and FDIV2:0 = 111(7). The output period can be user-adjusted from 1.7ms to 33hrs without additional components. Frequency divider inputs FDIV ...
Dual SiC MOSFET Driver Reference Design
... radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and comm ...
... radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and comm ...
TLV2342, TLV2342Y, TLV2344, TLV2344Y LinCMOS LOW-VOLTAGE HIGH-SPEED OPERATIONAL AMPLIFIERS
... LinCMOS technology. The LinCMOS process also features extremely high input impedance and ultra-low input bias currents. These parameters combined with good ac performance make the TLV234x effectual in applications such as high-frequency filters and wide-bandwidth sensors. To facilitate the design of ...
... LinCMOS technology. The LinCMOS process also features extremely high input impedance and ultra-low input bias currents. These parameters combined with good ac performance make the TLV234x effectual in applications such as high-frequency filters and wide-bandwidth sensors. To facilitate the design of ...
INTEGRATED CIRCUITS
... Multiple Voltage Bi-Directional Translation The channel pass transistors are constructed such that the gate of the reference transistor (GREF) pin is used to limit the maximum high voltage that will be passed by the device. This allows the use of different bus voltages on each source to drain channe ...
... Multiple Voltage Bi-Directional Translation The channel pass transistors are constructed such that the gate of the reference transistor (GREF) pin is used to limit the maximum high voltage that will be passed by the device. This allows the use of different bus voltages on each source to drain channe ...
26.5-40 and 76.5-90 GHz the Multichannel Radiometer - ELVA-1
... with frequencies within a range from 0 … 425 MHz. Balanced mixer (3, Fig. 17), local oscillator (2, Fig. 17) and low frequency bandpass filter (4, Fig. 17) are assembled into a double side band Down Converter unit. The amplifier (5, Fig. 17) has gain approx. 25 dB. Detectors (7, Fig. 17) rectify the ...
... with frequencies within a range from 0 … 425 MHz. Balanced mixer (3, Fig. 17), local oscillator (2, Fig. 17) and low frequency bandpass filter (4, Fig. 17) are assembled into a double side band Down Converter unit. The amplifier (5, Fig. 17) has gain approx. 25 dB. Detectors (7, Fig. 17) rectify the ...
AD5220 Data Sheet
... INL and DNL are measured at V W with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. V A = V DD and VB = 0 V. DNL specification limits of ± 1 LSB maximum are guaranteed monotonic operating conditions. See Figure 28 test circuit. ...
... INL and DNL are measured at V W with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. V A = V DD and VB = 0 V. DNL specification limits of ± 1 LSB maximum are guaranteed monotonic operating conditions. See Figure 28 test circuit. ...
Transistor–transistor logic

Transistor–transistor logic (TTL) is a class of digital circuits built from bipolar junction transistors (BJT) and resistors. It is called transistor–transistor logic because both the logic gating function (e.g., AND) and the amplifying function are performed by transistors (contrast with RTL and DTL).TTL is notable for being a widespread integrated circuit (IC) family used in many applications such as computers, industrial controls, test equipment and instrumentation, consumer electronics, synthesizers, etc. The designation TTL is sometimes used to mean TTL-compatible logic levels, even when not associated directly with TTL integrated circuits, for example as a label on the inputs and outputs of electronic instruments.After their introduction in integrated circuit form in 1963 by Sylvania, TTL integrated circuits were manufactured by several semiconductor companies, with the 7400 series (also called 74xx) by Texas Instruments becoming particularly popular. TTL manufacturers offered a wide range of logic gate, flip-flops, counters, and other circuits. Several variations from the original bipolar TTL concept were developed, giving circuits with higher speed or lower power dissipation to allow optimization of a design. TTL circuits simplified design of systems compared to earlier logic families, offering superior speed to resistor–transistor logic (RTL) and easier design layout than emitter-coupled logic (ECL). The design of the input and outputs of TTL gates allowed many elements to be interconnected.TTL became the foundation of computers and other digital electronics. Even after much larger scale integrated circuits made multiple-circuit-board processors obsolete, TTL devices still found extensive use as the ""glue"" logic interfacing more densely integrated components. TTL devices were originally made in ceramic and plastic dual-in-line (DIP) packages, and flat-pack form. TTL chips are now also made in surface-mount packages. Successors to the original bipolar TTL logic often are interchangeable in function with the original circuits, but with improved speed or lower power dissipation.