• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
1. Number Sense, Properties, and Operations
1. Number Sense, Properties, and Operations

1. Outline (1) Basic Graph Theory and graph coloring (2) Pigeonhole
1. Outline (1) Basic Graph Theory and graph coloring (2) Pigeonhole

(A B) |– A
(A B) |– A

Calculations involving the Mean
Calculations involving the Mean

4-7 The Real Numbers - Brown
4-7 The Real Numbers - Brown

4-7 The Real Numbers
4-7 The Real Numbers

Lec11Proofs
Lec11Proofs

Section 3.6: Indirect Argument: Contradiction and Contraposition
Section 3.6: Indirect Argument: Contradiction and Contraposition

Standards by Progression
Standards by Progression

Course Title: Transition to College Math Course Number: 38010
Course Title: Transition to College Math Course Number: 38010

14.4 Notes - Answer Key
14.4 Notes - Answer Key

Higher Maths Indices
Higher Maths Indices

draft NCEA Level 1 Mathematics and Statistics— page of 8 91027
draft NCEA Level 1 Mathematics and Statistics— page of 8 91027

Lec11Proofs05
Lec11Proofs05

Document
Document

Basic Set Theory
Basic Set Theory

CUSGARNE CP SCHOOL MATHEMATICS CALULATION POLICY
CUSGARNE CP SCHOOL MATHEMATICS CALULATION POLICY

Analysis 1.pdf
Analysis 1.pdf

... Unit 1 - Analysis on the real line In this unit we start by decomposing the set ° of real numbers into its subsets. We then define the so called standard metric on ° to be able to study its structure which consists of concepts like open and closed intervals, neighbourhoods, interior and limit points ...
Logic and Existential Commitment
Logic and Existential Commitment

FIRST DEGREE ENTAILMENT, SYMMETRY AND PARADOX
FIRST DEGREE ENTAILMENT, SYMMETRY AND PARADOX

Negative Numbers
Negative Numbers

1.2 Multiplying and Dividing Rational Numbers
1.2 Multiplying and Dividing Rational Numbers

Reaching transparent truth
Reaching transparent truth

Class Notes
Class Notes

Patterns and Puzzles
Patterns and Puzzles

< 1 ... 76 77 78 79 80 81 82 83 84 ... 187 >

Foundations of mathematics

Foundations of mathematics is the study of the logical and philosophical basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathematics. In this latter sense, the distinction between foundations of mathematics and philosophy of mathematics turns out to be quite vague. Foundations of mathematics can be conceived as the study of the basic mathematical concepts (number, geometrical figure, set, function, etc.) and how they form hierarchies of more complex structures and concepts, especially the fundamentally important structures that form the language of mathematics (formulas, theories and their models giving a meaning to formulas, definitions, proofs, algorithms, etc.) also called metamathematical concepts, with an eye to the philosophical aspects and the unity of mathematics. The search for foundations of mathematics is a central question of the philosophy of mathematics; the abstract nature of mathematical objects presents special philosophical challenges.The foundations of mathematics as a whole does not aim to contain the foundations of every mathematical topic.Generally, the foundations of a field of study refers to a more-or-less systematic analysis of its most basic or fundamental concepts, its conceptual unity and its natural ordering or hierarchy of concepts, which may help to connect it with the rest of human knowledge. The development, emergence and clarification of the foundations can come late in the history of a field, and may not be viewed by everyone as its most interesting part.Mathematics always played a special role in scientific thought, serving since ancient times as a model of truth and rigor for rational inquiry, and giving tools or even a foundation for other sciences (especially physics). Mathematics' many developments towards higher abstractions in the 19th century brought new challenges and paradoxes, urging for a deeper and more systematic examination of the nature and criteria of mathematical truth, as well as a unification of the diverse branches of mathematics into a coherent whole.The systematic search for the foundations of mathematics started at the end of the 19th century and formed a new mathematical discipline called mathematical logic, with strong links to theoretical computer science.It went through a series of crises with paradoxical results, until the discoveries stabilized during the 20th century as a large and coherent body of mathematical knowledge with several aspects or components (set theory, model theory, proof theory, etc.), whose detailed properties and possible variants are still an active research field.Its high level of technical sophistication inspired many philosophers to conjecture that it can serve as a model or pattern for the foundations of other sciences.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report