• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
PDF
PDF

Full text
Full text

Econ. 700 Tauchen/Petranka Summer 2008 Homework #1 For
Econ. 700 Tauchen/Petranka Summer 2008 Homework #1 For

... a. What properties of the reals and equalities are needed in order to show that p2 = 2q 2 ? b. Is the number p2 prime or composite? Does p2 have an even or odd number of prime factors? Does q 2 have an even or odd number of prime factors? Does the number 2q 2 have an even or odd number of prime fact ...
Section 9.2 – The Real Numbers
Section 9.2 – The Real Numbers

• Use the following number to answer each question: 345,786,342
• Use the following number to answer each question: 345,786,342

The Math-abet Book - TerrenceGraduatePortfolio
The Math-abet Book - TerrenceGraduatePortfolio

Course 161/2S3, Tutorial Sheet 3
Course 161/2S3, Tutorial Sheet 3

... ...
Honors question 4: Continued fractions.
Honors question 4: Continued fractions.

Evaluating the exact infinitesimal values of area of Sierpinski`s
Evaluating the exact infinitesimal values of area of Sierpinski`s

Slide 1
Slide 1

Name Per
Name Per

PAlg2 1.2 - Defiance City Schools
PAlg2 1.2 - Defiance City Schools

Lecture 3
Lecture 3

... Definition (3.10). If x P R but x does not belong to Q, then we say x is irrational. Hence Theorem 3.9 states that ...
a, b, x
a, b, x

... A deleted neighborhood of c excludes c. In this case, |x – c| > 0. A symmetric neighborhood of c can be described by |x – c| < h for some small positive number h. A deleted symmetric neighborhood of c is described by 0 < |x – c| < h. An open interval containing c is a neighborhood of c. For example ...
Chapter 7 Factor - numbers that are multiplied together to get a
Chapter 7 Factor - numbers that are multiplied together to get a

The Origin of Proof Theory and its Evolution
The Origin of Proof Theory and its Evolution

... mathematics. A first-order theory consists of a set of axioms (usually finite or recursively enumerable) and the statements deducible from them. Peano arithmetic is a first-order theory commonly formalized independently in first-order logic. It constitutes a fundamental formalism for arithmetic, and ...
Mathematics
Mathematics

-1 Natural Numbers Integers Whole Numbers Rational Numbers
-1 Natural Numbers Integers Whole Numbers Rational Numbers

Exam 2 Review Math 266 • You may use a calculator and you may
Exam 2 Review Math 266 • You may use a calculator and you may

instructor notes
instructor notes

Diagonalization
Diagonalization

... Proof: (by contradiction) Let R denote the set of all real numbers, and suppose that R is countable. Then by definition it is either finite or countably infinite. Clearly, it is not finite, therefore it must be countably infinite. By definition, since it is countably infinite it has the same cardina ...
Integers and the Number Line
Integers and the Number Line

Integers and the Number Line
Integers and the Number Line

Document
Document

Real Numbers and Number Operations 1.1 - Winterrowd-math
Real Numbers and Number Operations 1.1 - Winterrowd-math

< 1 ... 151 152 153 154 155 156 157 >

Infinitesimal

In mathematics, infinitesimals are things so small that there is no way to measure them. The insight with exploiting infinitesimals was that entities could still retain certain specific properties, such as angle or slope, even though these entities were quantitatively small. The word infinitesimal comes from a 17th-century Modern Latin coinage infinitesimus, which originally referred to the ""infinite-th"" item in a sequence. It was originally introduced around 1670 by either Nicolaus Mercator or Gottfried Wilhelm Leibniz. Infinitesimals are a basic ingredient in the procedures of infinitesimal calculus as developed by Leibniz, including the law of continuity and the transcendental law of homogeneity. In common speech, an infinitesimal object is an object which is smaller than any feasible measurement, but not zero in size; or, so small that it cannot be distinguished from zero by any available means. Hence, when used as an adjective, ""infinitesimal"" means ""extremely small"". In order to give it a meaning it usually has to be compared to another infinitesimal object in the same context (as in a derivative). Infinitely many infinitesimals are summed to produce an integral.Archimedes used what eventually came to be known as the method of indivisibles in his work The Method of Mechanical Theorems to find areas of regions and volumes of solids. In his formal published treatises, Archimedes solved the same problem using the method of exhaustion. The 15th century saw the work of Nicholas of Cusa, further developed in the 17th century by Johannes Kepler, in particular calculation of area of a circle by representing the latter as an infinite-sided polygon. Simon Stevin's work on decimal representation of all numbers in the 16th century prepared the ground for the real continuum. Bonaventura Cavalieri's method of indivisibles led to an extension of the results of the classical authors. The method of indivisibles related to geometrical figures as being composed of entities of codimension 1. John Wallis's infinitesimals differed from indivisibles in that he would decompose geometrical figures into infinitely thin building blocks of the same dimension as the figure, preparing the ground for general methods of the integral calculus. He exploited an infinitesimal denoted 1/∞ in area calculations.The use of infinitesimals by Leibniz relied upon heuristic principles, such as the law of continuity: what succeeds for the finite numbers succeeds also for the infinite numbers and vice versa; and the transcendental law of homogeneity that specifies procedures for replacing expressions involving inassignable quantities, by expressions involving only assignable ones. The 18th century saw routine use of infinitesimals by mathematicians such as Leonhard Euler and Joseph-Louis Lagrange. Augustin-Louis Cauchy exploited infinitesimals both in defining continuity in his Cours d'Analyse, and in defining an early form of a Dirac delta function. As Cantor and Dedekind were developing more abstract versions of Stevin's continuum, Paul du Bois-Reymond wrote a series of papers on infinitesimal-enriched continua based on growth rates of functions. Du Bois-Reymond's work inspired both Émile Borel and Thoralf Skolem. Borel explicitly linked du Bois-Reymond's work to Cauchy's work on rates of growth of infinitesimals. Skolem developed the first non-standard models of arithmetic in 1934. A mathematical implementation of both the law of continuity and infinitesimals was achieved by Abraham Robinson in 1961, who developed non-standard analysis based on earlier work by Edwin Hewitt in 1948 and Jerzy Łoś in 1955. The hyperreals implement an infinitesimal-enriched continuum and the transfer principle implements Leibniz's law of continuity. The standard part function implements Fermat's adequality.Vladimir Arnold wrote in 1990:Nowadays, when teaching analysis, it is not very popular to talk about infinitesimal quantities. Consequently present-day students are not fully in command of this language. Nevertheless, it is still necessary to have command of it.↑ ↑ ↑ ↑
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report