• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Conservation of Linear Momentum
Conservation of Linear Momentum

rotational_kinematics_worksheet_packet-key
rotational_kinematics_worksheet_packet-key

9.1 The Action of Forces and Torques on Rigid Objects
9.1 The Action of Forces and Torques on Rigid Objects

Chapter 7 Powerpoint
Chapter 7 Powerpoint

... The cornering performance of an automobile is evaluated on a skid pad, where the maximum speed that a car can maintain around a circular path on a dry, flat surface is measured. Then the centripetal acceleration, also called the lateral acceleration, is calculated as a multiple of the free-fall acce ...
Experiment No : M3 Name of the Experiment: MOMENT OF INERTIA
Experiment No : M3 Name of the Experiment: MOMENT OF INERTIA

Perfectly inelastic collision
Perfectly inelastic collision

Collision of a ball with a barbell and related impulse problems
Collision of a ball with a barbell and related impulse problems

Stress, Strain, Virtual Power and Conservation Principles
Stress, Strain, Virtual Power and Conservation Principles

Systems of Particles
Systems of Particles

... • The effective force of a particle is defined as the product of it mass and acceleration. It will be shown that the system of external forces acting on a system of particles is equipollent with the system of effective forces of the system. • The mass center of a system of particles will be defined ...
Two-Dimensional Motion and Vectors
Two-Dimensional Motion and Vectors

Stress, Strain, Virtual Power and Conservation Principles
Stress, Strain, Virtual Power and Conservation Principles

Lab Handout
Lab Handout

am-ii_unit-v-3
am-ii_unit-v-3

Chapters 1–5 Schedule of Crisis Centre
Chapters 1–5 Schedule of Crisis Centre

... • Elastic collision: the total kinetic energy after collision is equal ! to the total before collision. • Inelastic collision: the total kinetic energy is not conserved. If ! objects stick together after collision, the collision is “perfectly ! inelastic” – no bounce of one object from the other. Ex ...
Chapter 19 Angular Momentum
Chapter 19 Angular Momentum

MOMENTUM AND ENERGY
MOMENTUM AND ENERGY

Chapter 5 Work and Energy conclusion
Chapter 5 Work and Energy conclusion

... Also, the reaction force changes the magnitude of the bat's velocity vector ...
Mass-spring system Simple Model Application of the momentum
Mass-spring system Simple Model Application of the momentum

Circular Motion
Circular Motion

click - Uplift Education
click - Uplift Education

CENTRAL TEXAS COLLEGE SYLLABUS FOR PHYS 2425
CENTRAL TEXAS COLLEGE SYLLABUS FOR PHYS 2425

Momentum
Momentum

... ONE DIMENSIONAL MOMENTUM A CRASH COURSE IN COLLISIONS & EXPLOSIONS ...
Holt Physics Chapter 8
Holt Physics Chapter 8

... the right side of a meter stick 0.30 m from the axis of rotation at an angle of 35 degrees. A second downward force of 67N is exerted at an angle of 49 degrees to the meter stick 0.40m to the left of the axis of rotation. What is the net torque? ...
Rotational Motion - My Teacher Pages
Rotational Motion - My Teacher Pages

... Reasoning Strategy 1. Make a drawing. 2. Decide which directions are to be called positive (+) and negative (-). 3. Write down the values that are given for any of the five kinematic variables. 4. Verify that the information contains values for at least three of the five kinematic variables. Select ...
Gravity-centripetal acceleration
Gravity-centripetal acceleration

< 1 ... 50 51 52 53 54 55 56 57 58 ... 140 >

Relativistic angular momentum



""Angular momentum tensor"" redirects to here.In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.Angular momentum is a dynamical quantity derived from position and momentum, and is important; angular momentum is a measure of an object's ""amount of rotational motion"" and resistance to stop rotating. Also, in the same way momentum conservation corresponds to translational symmetry, angular momentum conservation corresponds to rotational symmetry – the connection between symmetries and conservation laws is made by Noether's theorem. While these concepts were originally discovered in classical mechanics – they are also true and significant in special and general relativity. In terms of abstract algebra; the invariance of angular momentum, four-momentum, and other symmetries in spacetime, are described by the Poincaré group and Lorentz group.Physical quantities which remain separate in classical physics are naturally combined in SR and GR by enforcing the postulates of relativity, an appealing characteristic. Most notably; space and time coordinates combine into the four-position, and energy and momentum combine into the four-momentum. These four-vectors depend on the frame of reference used, and change under Lorentz transformations to other inertial frames or accelerated frames.Relativistic angular momentum is less obvious. The classical definition of angular momentum is the cross product of position x with momentum p to obtain a pseudovector x×p, or alternatively as the exterior product to obtain a second order antisymmetric tensor x∧p. What does this combine with, if anything? There is another vector quantity not often discussed – it is the time-varying moment of mass (not the moment of inertia) related to the boost of the centre of mass of the system, and this combines with the classical angular momentum to form an antisymmetric tensor of second order. For rotating mass–energy distributions (such as gyroscopes, planets, stars, and black holes) instead of point-like particles, the angular momentum tensor is expressed in terms of the stress–energy tensor of the rotating object.In special relativity alone, in the rest frame of a spinning object; there is an intrinsic angular momentum analogous to the ""spin"" in quantum mechanics and relativistic quantum mechanics, although for an extended body rather than a point particle. In relativistic quantum mechanics, elementary particles have spin and this is an additional contribution to the orbital angular momentum operator, yielding the total angular momentum tensor operator. In any case, the intrinsic ""spin"" addition to the orbital angular momentum of an object can be expressed in terms of the Pauli–Lubanski pseudovector.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report