• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Actual exam 2 - Sarah Spolaor
Actual exam 2 - Sarah Spolaor

Chapter 6 Impulse and Momentum Continued
Chapter 6 Impulse and Momentum Continued

ω ω α θ θ ω ω θ θ ω α ω ω α θ ω ω α θ ω ω α θ π π θ ω
ω ω α θ θ ω ω θ θ ω α ω ω α θ ω ω α θ ω ω α θ π π θ ω

3 - USNA
3 - USNA

Mechanics
Mechanics

... Free Fall Occurs when an object falls unimpeded. Gravity accelerates the object toward the earth. g = 9.8 m/s2 downward. a = -g if up is positive. acceleration is down when ball is thrown up EVERYWHERE in the balls flight. ...
Rotational Motion
Rotational Motion

ME33: Fluid Flow Lecture 1: Information and Introduction
ME33: Fluid Flow Lecture 1: Information and Introduction

... rotating head. Water enters the sprinkler from the base along the axis of rotation at a rate of 20 L/s and leaves the nozzles in the tangential direction. The sprinkler rotates at a rate of 300 rpm in a horizontal plane. The diameter of each jet is 1 cm, and the normal distance between the axis of r ...
Lecture 02: Rotational Dynamics I
Lecture 02: Rotational Dynamics I

... mass M = 3.0 kg and radius R = 0.4m is used to draw water from a well. A bucket of mass m = 2.0 kg is attached to a cord that is wrapped around the cylinder.  (a) Find the tension T in the cord and acceleration a of the object.  (b) If the object starts from rest at the top of the well and falls f ...
PHYS-2010: General Physics I Course Lecture - Faculty
PHYS-2010: General Physics I Course Lecture - Faculty

Physics I - Rose
Physics I - Rose

Unit 1 Section 2 - Belfast Royal Academy
Unit 1 Section 2 - Belfast Royal Academy

09_LectureOutline
09_LectureOutline

香港考試局
香港考試局

Chapter 9 - s3.amazonaws.com
Chapter 9 - s3.amazonaws.com

... Section 9.1 ...
Chapter 8:
Chapter 8:

... and weight 80.0 N. A cable, inclined at a 35 angle with the boom, is attached at a distance of 2.38 m from the hinge at the wall. The weight of the sign is 120.0 N. ...
Powerpoint - Buncombe County Schools
Powerpoint - Buncombe County Schools

... p = mv p = (280 kg)(3.2 m/s) ...
Chapter 2
Chapter 2

Robot Kinetics – Slide Set 10
Robot Kinetics – Slide Set 10

... Due to Coriolis Forces relating motion of one link to coupling effects of other links’ motions Due to Centrifugal Forces that cause the link to have a tendency to ‘fly away’ due to coupling to neighboring links and its own ...
Lecture-14-10
Lecture-14-10

... Power output of the Crab pulsar •Power output of the Crab pulsar, in radio and X-rays, is about 6 x 1031 W (which is about 150,000 times the power output of our sun). Since the pulsar is out of nuclear fuel, where does all this energy come from ? • The angular speed of the pulsar, and so the rotati ...
rotary motion - GEOCITIES.ws
rotary motion - GEOCITIES.ws

... A 7.5 kg bowling ball (Irolling = 7/5 m R2 ) with a radius of 12 cm is at the top of a ramp 5.0 m long and inclined at 30.00. a) Find the torque acting on the ball. b) Find its rotational inertia. ...
chapter09
chapter09

... Section 9.1 ...
Space For Refection
Space For Refection

General Physics I Homework Set 5
General Physics I Homework Set 5

FinalExamReview_D
FinalExamReview_D

... Slope = Dv/Dt = Acceleration Dt ...
PHYS 1443 * Section 501 Lecture #1
PHYS 1443 * Section 501 Lecture #1

< 1 ... 43 44 45 46 47 48 49 50 51 ... 140 >

Relativistic angular momentum



""Angular momentum tensor"" redirects to here.In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.Angular momentum is a dynamical quantity derived from position and momentum, and is important; angular momentum is a measure of an object's ""amount of rotational motion"" and resistance to stop rotating. Also, in the same way momentum conservation corresponds to translational symmetry, angular momentum conservation corresponds to rotational symmetry – the connection between symmetries and conservation laws is made by Noether's theorem. While these concepts were originally discovered in classical mechanics – they are also true and significant in special and general relativity. In terms of abstract algebra; the invariance of angular momentum, four-momentum, and other symmetries in spacetime, are described by the Poincaré group and Lorentz group.Physical quantities which remain separate in classical physics are naturally combined in SR and GR by enforcing the postulates of relativity, an appealing characteristic. Most notably; space and time coordinates combine into the four-position, and energy and momentum combine into the four-momentum. These four-vectors depend on the frame of reference used, and change under Lorentz transformations to other inertial frames or accelerated frames.Relativistic angular momentum is less obvious. The classical definition of angular momentum is the cross product of position x with momentum p to obtain a pseudovector x×p, or alternatively as the exterior product to obtain a second order antisymmetric tensor x∧p. What does this combine with, if anything? There is another vector quantity not often discussed – it is the time-varying moment of mass (not the moment of inertia) related to the boost of the centre of mass of the system, and this combines with the classical angular momentum to form an antisymmetric tensor of second order. For rotating mass–energy distributions (such as gyroscopes, planets, stars, and black holes) instead of point-like particles, the angular momentum tensor is expressed in terms of the stress–energy tensor of the rotating object.In special relativity alone, in the rest frame of a spinning object; there is an intrinsic angular momentum analogous to the ""spin"" in quantum mechanics and relativistic quantum mechanics, although for an extended body rather than a point particle. In relativistic quantum mechanics, elementary particles have spin and this is an additional contribution to the orbital angular momentum operator, yielding the total angular momentum tensor operator. In any case, the intrinsic ""spin"" addition to the orbital angular momentum of an object can be expressed in terms of the Pauli–Lubanski pseudovector.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report