• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
STOCHASTIC NETWORKS EXAMPLE SHEET 1 SOLUTIONS
STOCHASTIC NETWORKS EXAMPLE SHEET 1 SOLUTIONS

+ P(B) - TonyReiter
+ P(B) - TonyReiter

... population of about 274,037,295. Therefore, ...
CH4. Introduction to Probability
CH4. Introduction to Probability

4) Find binomial probabilities with a shortcut feature
4) Find binomial probabilities with a shortcut feature

Chapter 1: Statistics
Chapter 1: Statistics

...  Example: Consider tossing a fair coin. Define the event H as the occurrence of a head. What is the probability of the event H, P(H)? 1. In a single toss of the coin, there are two possible outcomes 2. Since the coin is fair, each outcome (side) should have an equally likely chance of occurring 3. ...
Chapter 1: Statistics - Richland County School District Two
Chapter 1: Statistics - Richland County School District Two

of the measurement
of the measurement

Introduction to Probability Experiments Sample Space Event
Introduction to Probability Experiments Sample Space Event

Introduction to Probability Experiments Sample Space Event
Introduction to Probability Experiments Sample Space Event

Student Study Guide
Student Study Guide

Probability
Probability

Data Analysis Techniques 1 - Istituto Nazionale di Fisica
Data Analysis Techniques 1 - Istituto Nazionale di Fisica

Grade 7/8 Math Circles Probability Probability
Grade 7/8 Math Circles Probability Probability

Probability
Probability

Is STATS 101 Prepared for the CC Student?
Is STATS 101 Prepared for the CC Student?

Prob(B)
Prob(B)

Certainty Factor Example
Certainty Factor Example

Topic 6 - Probability Mass Function
Topic 6 - Probability Mass Function

Discrete Probability Distributions
Discrete Probability Distributions

Rules of Probability
Rules of Probability

... This last equation is also known as the multiplication rule, which says: to find the probability of both A and B happening, you first look at the probability of B happening alone, then multiply it with the probability of A, given that B has happened. This is handy when we are looking at two events t ...
Examples of discrete probability distributions
Examples of discrete probability distributions

Review of Definitions for Probability - HMC Math
Review of Definitions for Probability - HMC Math

Probability and Inference
Probability and Inference

Probability Mass Functions for Additional Years of Labor Market
Probability Mass Functions for Additional Years of Labor Market

The Laws of Large Numbers Compared
The Laws of Large Numbers Compared

< 1 ... 162 163 164 165 166 167 168 169 170 ... 305 >

Probability interpretations



The word probability has been used in a variety of ways since it was first applied to the mathematical study of games of chance. Does probability measure the real, physical tendency of something to occur or is it a measure of how strongly one believes it will occur, or does it draw on both these elements? In answering such questions, mathematicians interpret the probability values of probability theory.There are two broad categories of probability interpretations which can be called ""physical"" and ""evidential"" probabilities. Physical probabilities, which are also called objective or frequency probabilities, are associated with random physical systems such as roulette wheels, rolling dice and radioactive atoms. In such systems, a given type of event (such as the dice yielding a six) tends to occur at a persistent rate, or ""relative frequency"", in a long run of trials. Physical probabilities either explain, or are invoked to explain, these stable frequencies. Thus talking about physical probability makes sense only when dealing with well defined random experiments. The two main kinds of theory of physical probability are frequentist accounts (such as those of Venn, Reichenbach and von Mises) and propensity accounts (such as those of Popper, Miller, Giere and Fetzer).Evidential probability, also called Bayesian probability (or subjectivist probability), can be assigned to any statement whatsoever, even when no random process is involved, as a way to represent its subjective plausibility, or the degree to which the statement is supported by the available evidence. On most accounts, evidential probabilities are considered to be degrees of belief, defined in terms of dispositions to gamble at certain odds. The four main evidential interpretations are the classical (e.g. Laplace's) interpretation, the subjective interpretation (de Finetti and Savage), the epistemic or inductive interpretation (Ramsey, Cox) and the logical interpretation (Keynes and Carnap).Some interpretations of probability are associated with approaches to statistical inference, including theories of estimation and hypothesis testing. The physical interpretation, for example, is taken by followers of ""frequentist"" statistical methods, such as R. A. Fisher, Jerzy Neyman and Egon Pearson. Statisticians of the opposing Bayesian school typically accept the existence and importance of physical probabilities, but also consider the calculation of evidential probabilities to be both valid and necessary in statistics. This article, however, focuses on the interpretations of probability rather than theories of statistical inference.The terminology of this topic is rather confusing, in part because probabilities are studied within a variety of academic fields. The word ""frequentist"" is especially tricky. To philosophers it refers to a particular theory of physical probability, one that has more or less been abandoned. To scientists, on the other hand, ""frequentist probability"" is just another name for physical (or objective) probability. Those who promote Bayesian inference view ""frequentist statistics"" as an approach to statistical inference that recognises only physical probabilities. Also the word ""objective"", as applied to probability, sometimes means exactly what ""physical"" means here, but is also used of evidential probabilities that are fixed by rational constraints, such as logical and epistemic probabilities.It is unanimously agreed that statistics depends somehow on probability. But, as to what probability is and how it is connected with statistics, there has seldom been such complete disagreement and breakdown of communication since the Tower of Babel. Doubtless, much of the disagreement is merely terminological and would disappear under sufficiently sharp analysis.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report