• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
e-the-quantum-numberssv-2
e-the-quantum-numberssv-2

1.1 What has to be explained by Quantum mechanics?
1.1 What has to be explained by Quantum mechanics?

Equilibrium and non-equilibrium dynamics in the quantum regime
Equilibrium and non-equilibrium dynamics in the quantum regime

The presentation template
The presentation template

An Introduction to Quantum Computing
An Introduction to Quantum Computing

Professor Jason Twamley
Professor Jason Twamley

David Williams (University of Cambridge)
David Williams (University of Cambridge)

Theory of quantum light and matter Research supervisor Prof. Paul Eastham
Theory of quantum light and matter Research supervisor Prof. Paul Eastham

Prof. Dr. Klaus Hornberger Universitat Duisburg
Prof. Dr. Klaus Hornberger Universitat Duisburg

... Does the quantum superposition principle hold on mesoscopic or even macroscopic scales? The tremendous success of quantum theory notwithstanding, this question remains unsettled to date. I will discuss experimental tests of the quantum superposition principle, such as matter wave interferometry with ...
PhD position: Quantum information processing with single electron spins
PhD position: Quantum information processing with single electron spins

HWU4-21 QUESTION: The principal quantum number, n, describes
HWU4-21 QUESTION: The principal quantum number, n, describes

... The principal quantum number, n, describes the energy level of a particular orbital as a function of the distance from the center of the nucleus. Additional quantum numbers exist to quantify the other characteristics of the electron. The angular momentum quantum number (ℓ), the magnetic quantum numb ...
Entanglement and Distinguishability of Quantum States
Entanglement and Distinguishability of Quantum States

Slide 1 - s3.amazonaws.com
Slide 1 - s3.amazonaws.com

Topological Insulators
Topological Insulators

Article. - NUS School of Computing
Article. - NUS School of Computing

Quantum computation communication theory
Quantum computation communication theory

Quantum computing and the monogamy of entanglement
Quantum computing and the monogamy of entanglement

Probing contextuality with superconducting quantum circuits Talk 27. Oct. 2015  ABSTRACT:
Probing contextuality with superconducting quantum circuits Talk 27. Oct. 2015 ABSTRACT:

Quantum Cryptography
Quantum Cryptography

... of quantum mechanics, not just a passive, external process as in Classic Crypto. ...
Lecture 1 - Department of Computer Science and Engineering, CUHK
Lecture 1 - Department of Computer Science and Engineering, CUHK

History and the State-of-art in Quantum Computation
History and the State-of-art in Quantum Computation

Prof. Bertrand Reulet, Université de Sherbrooke, Canada  Talk: 23. May 2014
Prof. Bertrand Reulet, Université de Sherbrooke, Canada Talk: 23. May 2014

Quantum mechanical model
Quantum mechanical model

... ...
Lecture 3
Lecture 3

... Then: CNOT on q0 and q1 x=0,1 x |xi y=0,1 1/21/2|y,yi CNOT: x,y x/21/2 |x, x © y, yi Measure q1: Result is a Prob. for 0/1 is 0.5 each: |0|2/2+|1|2/2=1/2 Remaining state: yy©a |y © a , yi on q0,q2 Send a to Bob a=0 ) Bob does nothing a=1 ) Bob applies X-Gate (Bit Flip) Result in both cases: ...
Ex 2
Ex 2

< 1 ... 250 251 252 253 254 >

Quantum teleportation



Quantum teleportation is a process by which quantum information (e.g. the exact state of an atom or photon) can be transmitted (exactly, in principle) from one location to another, with the help of classical communication and previously shared quantum entanglement between the sending and receiving location. Because it depends on classical communication, which can proceed no faster than the speed of light, it cannot be used for faster-than-light transport or communication of classical bits. It also cannot be used to make copies of a system, as this violates the no-cloning theorem. While it has proven possible to teleport one or more qubits of information between two (entangled) atoms, this has not yet been achieved between molecules or anything larger.Although the name is inspired by the teleportation commonly used in fiction, there is no relationship outside the name, because quantum teleportation concerns only the transfer of information. Quantum teleportation is not a form of transportation, but of communication; it provides a way of transporting a qubit from one location to another, without having to move a physical particle along with it.The seminal paper first expounding the idea was published by C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters in 1993. Since then, quantum teleportation was first realized with single photons and later demonstrated with various material systems such as atoms, ions, electrons and superconducting circuits. The record distance for quantum teleportation is 143 km (89 mi).
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report