• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Download Paper (. pdf ).
Download Paper (. pdf ).

Non-Markovian Regime Switching with Endogenous States and
Non-Markovian Regime Switching with Endogenous States and

... Autoregressive models are popular in economics because many economic variables appear to respond more to their own past values than they do to a distributed lag of any other variable. The same is likely true of regimes. If the conditions gradually become ripe for a regime change, it might not be pos ...
PDF
PDF

Multicollinearity
Multicollinearity

Trade Facilitation and Country Size
Trade Facilitation and Country Size

Modeling Rainfall Prediction using Fuzzy Logic
Modeling Rainfall Prediction using Fuzzy Logic

Document
Document

PowerPoint 2007
PowerPoint 2007

PPT, 4386 KB
PPT, 4386 KB

prml-slides-2 - Microsoft Research
prml-slides-2 - Microsoft Research

Count Data Models for Financial Data
Count Data Models for Financial Data

prml-slides
prml-slides

Kazan-3 eng12_09_201136
Kazan-3 eng12_09_201136

Introduction to variance reduction methods 1 Control
Introduction to variance reduction methods 1 Control

Linear Methods for Classification - Penn State Department of Statistics
Linear Methods for Classification - Penn State Department of Statistics

Introductory Statistical Concepts
Introductory Statistical Concepts

Dear Nicole Please find our revision of this paper attached. We
Dear Nicole Please find our revision of this paper attached. We

... correlation” between the remodelling scores and their associated remodelling indices (Tables 2 and 3), and “zero correlation” between the scores and the indices associated with previously removed remodelling components. Initially, it was not obvious to us that a single latent factor would lead to le ...
Time series modelling of childhood diseases
Time series modelling of childhood diseases

... (d) The SEIR or RAS models are continuous dynamical systems, whereas the data are discrete time measurements. Sometimes, pre-vaccination measles epidemic cycles in large cities were irregular in duration or amplitude. This has prompted an extensive search for non-linearity and chaos in measles dynam ...
Sums of independent variables approximating a boolean function
Sums of independent variables approximating a boolean function

Linear Programming for Optimization Mark A. Schulze, Ph.D
Linear Programming for Optimization Mark A. Schulze, Ph.D

... change the value of the cost function either). Degeneracy arises from solutions where one or more basic variables are zero, called degenerate solutions. When a basic variable with zero value is replaced in the basis with an entering variable that is limited to zero value, the solution does not chang ...
Nonconcave Penalized Likelihood With NP
Nonconcave Penalized Likelihood With NP

The Canadian treasury bill auction and the term
The Canadian treasury bill auction and the term

... of Canada uses the technique of draw-down and re-deposit to influence the overnight loan rate. The link between these instruments of policy and longer-term rates relevant for investment and consumption decisions is provided by the term structure of interest rates. This paper shows that the periods of ...
Central Limit Theorem - Greg`s PCC Math Page
Central Limit Theorem - Greg`s PCC Math Page

Slide 1
Slide 1

Sample Selection in Nonlinear Models
Sample Selection in Nonlinear Models

< 1 ... 16 17 18 19 20 21 22 23 24 ... 125 >

Regression analysis

In statistics, regression analysis is a statistical process for estimating the relationships among variables. It includes many techniques for modeling and analyzing several variables, when the focus is on the relationship between a dependent variable and one or more independent variables (or 'predictors'). More specifically, regression analysis helps one understand how the typical value of the dependent variable (or 'criterion variable') changes when any one of the independent variables is varied, while the other independent variables are held fixed. Most commonly, regression analysis estimates the conditional expectation of the dependent variable given the independent variables – that is, the average value of the dependent variable when the independent variables are fixed. Less commonly, the focus is on a quantile, or other location parameter of the conditional distribution of the dependent variable given the independent variables. In all cases, the estimation target is a function of the independent variables called the regression function. In regression analysis, it is also of interest to characterize the variation of the dependent variable around the regression function which can be described by a probability distribution.Regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Regression analysis is also used to understand which among the independent variables are related to the dependent variable, and to explore the forms of these relationships. In restricted circumstances, regression analysis can be used to infer causal relationships between the independent and dependent variables. However this can lead to illusions or false relationships, so caution is advisable; for example, correlation does not imply causation.Many techniques for carrying out regression analysis have been developed. Familiar methods such as linear regression and ordinary least squares regression are parametric, in that the regression function is defined in terms of a finite number of unknown parameters that are estimated from the data. Nonparametric regression refers to techniques that allow the regression function to lie in a specified set of functions, which may be infinite-dimensional.The performance of regression analysis methods in practice depends on the form of the data generating process, and how it relates to the regression approach being used. Since the true form of the data-generating process is generally not known, regression analysis often depends to some extent on making assumptions about this process. These assumptions are sometimes testable if a sufficient quantity of data is available. Regression models for prediction are often useful even when the assumptions are moderately violated, although they may not perform optimally. However, in many applications, especially with small effects or questions of causality based on observational data, regression methods can give misleading results.In a narrower sense, regression may refer specifically to the estimation of continuous response variables, as opposed to the discrete response variables used in classification. The case of a continuous output variable may be more specifically referred to as metric regression to distinguish it from related problems.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report